نوع مقاله : علمی پژوهشی - زراعت

نویسندگان

1 دانشجوی کارشناسی ارشد اگروتکنولوژی-فیزیولوژی گیاهان زراعی، گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه یاسوج، یاسوج، ایران

2 استادیار، گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه یاسوج، یاسوج، ایران

3 دانشیار، گروه گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه یاسوج، یاسوج، ایران

4 استادیار، گروه گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه یاسوج، یاسوج، ایران

5 دانش‌آموخته کارشناسی ارشد اگروتکنولوژی-فیزیولوژی گیاهان زراعی، گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه یاسوج، یاسوج، ایران

چکیده

لوبیا (Phaseolus vulgaris L.) از مهم‌ترین حبوبات است که به‌دلیل محتوای بالای پروتئین و فواید تغذیه‌ای خود در سطح جهانی و به‌ویژه در ایران ارزش زیادی دارد. در سال‌های اخیر، افزایش تقاضای جهانی برای غذاهای غنی از پروتئین، اهمیت کشت لوبیا را بیشتر کرده است. با این حال، بحران کمبود آب به‌عنوان یک چالش جدی برای تولید غذا و امنیت غذایی در سطح جهانی مطرح است. این مشکل به‌خصوص در ایران که در ناحیه بیابانی قرار دارد و میزان بارش آن کمتر از یک‌سوم میانگین جهانی است، حادتر است. در این شرایط، استفاده از روش‌های نوین کشاورزی می‌تواند به بهبود عملکرد محصولات کمک کند. براسینواستروئیدها به‌عنوان تنظیم‌کننده‌های رشد گیاهی، با بهبود فعالیت‌های فیزیولوژیکی گیاهان، می‌توانند مقاومت آن‌ها را در برابر تنش‌های محیطی افزایش دهند. به‌منظور بررسی برخی پارامترهای فیزیولوژیکی و امکان افزایش عملکرد دانه در لوبیا چیتی، پژوهشی با استفاده از 24-اپی‌براسینولید تحت شرایط تنش کم‌آبی انجام شد. این تحقیق به‌صورت کرت‌های یکبار خردشده در قالب طرح بلوک‌های کامل تصادفی با سه تکرار در سال زراعی 1401، در مزرعه‌ای واقع در شرق شیراز انجام شد. در این تحقیق، رژیم آبیاری در سه سطح: آبیاری کامل (100 درصد نیاز رطوبتی) و تنش کم‌آبی در سطوح 80 و 60 درصد نیاز رطوبتی به عنوان عامل اصلی و چهار غلظت 24-اپی‌براسینولید (شامل شاهد با آب مقطر، 05/0، 1/0 و 2/0 میلی‌گرم بر لیتر) به‌عنوان عامل فرعی در نظر گرفته شد.نتایج نشان داد که تنش کم‌آبی و محلول‌پاشی 24-اپی‌براسینولید تأثیر معنی‌داری بر تمامی صفات داشتند. کاربرد 24-اپی‌براسینولید با غلظت 2/0 میلی‌گرم بر لیتر موجب افزایش شاخص کلروفیل و محتوای نسبی آب برگ‌ها به ترتیب به میزان 42/7 درصد و 77/11درصدنسبت به تیمار شاهد (بدون کاربرد هورمون) شد. با معنی‌داری برهمکنش رژیم ‌آبیاری و محلولپاشی هورمون، در سطوح 60 و 80 درصد نیاز آبی، کاربرد 2/0 میلی‌گرم بر لیتر 24-اپی‌براسینولید آنتی‌اکسیدان‌های آنزیمی کاتالاز، پراکسیداز و سوپراکسید دیسموتاز را در مقایسه با تیمار شاهد به ترتیب 172، 105، 35/0 و 131، 115 و 45/0 درصد افزایش داد. در همین راستا کاربرد بالاترین سطح هورمون در سطوح 100، 80 و 60 درصد نیاز آبی به ترتیب موجب افزایش 38/72، 02/56 و 35/44 درصدی عملکرد دانه در مقایسه با تیمار شاهد شد. بنابراین کاربرد 24-اپی‌براسینولید (به میزان 2/0 میلی‌گرم بر لیتر) به جهت کاهش رادیکال‌های آزاد اکسیژن و جلوگیری از آسیب دیواره سلولی و تخریب درشت مولکول‌ها، به‌عنوان راهکاری برای افزایش عملکرد دانه لوبیا تحت شرایط آبیاری کامل و تنش کم‌آبیاری (60 و 80 درصد نیاز آبی) پیشنهاد می‌شود.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

The effect of 24-Epibrassinolide foliar application on the enzymatic and non-enzymatic defense system and yield of pinto beans (Phaseolus vulgaris L. cv. Pinto) under Low irrigation stress

نویسندگان [English]

  • Sulmaz Samfar 1
  • Hojatolah Latifmanesh 2
  • Ali Moradi 3
  • Amin Mirshekari 4
  • Hamid Alahdadi 5

1 M.Sc. Student in Agrotechnology-Crop Physiology, Department of Agronomy and Plant Breeding, Faculty of Agriculture, Yasouj University, Yasouj, Iran

2 Assistant Professor, Department of Agronomy and Plant Breeding, Faculty of Agriculture, Yasouj University, Yasouj, Iran

3 Associate Professor, Department of Agronomy and Plant Breeding, Faculty of Agriculture, Yasouj University, Yasouj, Iran

4 Assistant Professor, Department of Agronomy and Plant Breeding, Faculty of Agriculture, Yasouj University, Yasouj, Iran

5 M.Sc. Graduate in Agrotechnology-Crop Physiology, Department of Agronomy and Plant Breeding, Faculty of Agriculture, Yasouj University, Yasouj, Iran

چکیده [English]

Introduction
Beans (Phaseolus vulgaris L.) are among the most valuable and strategic legumes globally and in Iran, primarily due to their high protein content and nutritional benefits. Growing global demand for protein-rich foods highlights the importance of enhancing bean production. However, water scarcity, exacerbated by Iran's location along the global desert belt and receiving less than one-third of the global average rainfall, poses significant challenges to sustainable agriculture and food security.  Brassinosteroids, a class of plant growth regulators, have emerged as a promising solution to mitigate environmental stresses like drought while improving crop growth and yield. This study aims to evaluate the effects of foliar application of 24-epibrassinolide hormone on various physiological traits, enzymatic and non-enzymatic defense mechanisms, and gain yield of pinto beans under low irrigation stress.
 Materials and Methods
A field experiment was conducted during the 2022 growing season on a farm in eastern Shiraz, using a split-plot design within a randomized complete block design with three replications. The irrigation regime was applied at three levels: full irrigation (100% of the moisture requirement) and low irrigation stress (80% and 60% of the moisture requirement), as the main factor. Four concentrations of 24-epibrassinolide, including control (distilled water), 0.05, 0.1, and 0.2 mg/L were applied as the subplot factor. The experiment aimed to assess physiological traits such as chlorophyll index, relative water content, antioxidant enzyme activity (catalase, peroxidase, and superoxide dismutase), grain yield under different irrigation and hormone treatments.
Results and Discussion
The results revealed that both low irrigation stress and 24-epibrassinolide application significantly influenced all measured traits. Foliar application of 0.2 mg/L 24-epibrassinolide increased the chlorophyll index and leaf relative water content by 7.42% and 11.77%, respectively, compared to the control. Significant interactions between irrigation regimes and hormone concentrations were observed. At 60% and 80% moisture levels, the 0.2 mg/L hormone treatment increased antioxidant enzyme activities as follows (compared to the control): catalase (172% (60%) and 131% (80%)), peroxidase (105% (60%) and 115% (80%)), and superoxide dismutase (0.35% (60%) and 0.45% (80%). Similarly, seed yield improved significantly with 24-epibrassinolide application. Under 100%, 80%, and 60% irrigation levels, 0.2 mg/L application resulted in yield increases of 72.38%, 56.02%, and 44.35%, respectively, compared to the control.
Conclusion
The application of 24-epibrassinolide at a concentration of 0.2 mg/L effectively enhances the antioxidant defense system, reduces reactive oxygen species, prevents cell wall damage, and minimizes macromolecule degradation in pinto beans. These effects contribute to improved grain yield, under both full and low irrigation conditions. This approach offers a promising solution for mitigating water stress and promoting sustainable bean production in arid and semi-arid regions.

کلیدواژه‌ها [English]

  • 24-epibrassinolide
  • Antioxidant enzymes
  • Beans
  • Grain yield
Abogadallah, G.M. (2010). Insights into the significance of antioxidative defense under salt stress. Plant Signaling and Behavior, 5(4): 369-374.
Aebi, H. (1984). Catalase in vitro. Methods in Enzymology, 105: 121-126.
Agami, R. A. (2013). Alleviating the adverse effects of NaCl stress in maize seedlings by pretreating seeds with salicylic acid and 24-epibrassinolide. South African Journal of Botany, 88: 171-177.
Ahammed, G., Zhou, Y., Xia, X., Mao, W., Shi, K., & Yu, J. (2013). Brassinosteroid regulates secondary metabolism in tomato towards enhanced tolerance to phenanthrene. Biologia Plantarum, 57(1): 154-158.
Ahmadizadeh, M., Valizadeh, M., Zaefizadeh, M., & Shahbazi, H. (2011). Antioxidative protection and electrolyte leakage in durum wheat under drought stress condition. Journal of Applied Sciences Research, 7(3): 236-246.
Ahmed, F.E., & Suliman, A.S.H. (2010). Effect of water stress applied at different stages of growth on seed yield and water-use efficiency of cowpea. Agriculture and Biology Journal of North America, 1(4): 534-540.
Ahmed, S., Kouser, S., Asgher, M., & Gandhi, S.G. (2021). Plant aquaporins: A frontward to make crop plants drought resistant. Physiologia Plantarum, 172(2): 1089-1105.
Ali, S., Farooq, M., & Bashir, H. (2021). Brassinosteroids mitigate drought stress in lentil (Lens culinaris) by enhancing chlorophyll content and photosynthetic efficiency. Plant Growth Regulation, 93(2): 235-246.
Allahmoradi, P., Mansourifar, C., Saidi, M., & Jalali Honarmand, S. (2013). Water deficiency and its effects on grain yield and some physiological traits during different growth stages in lentil (Lens culinaris L.) cultivars. Annals of Biological Research, 4(5): 139-145.
Alonso, R., Elvira, S., Castillo, F., & Gimeno, B. (2001). Interactive effects of ozone and drought stress on pigments and activities of antioxidative enzymes in Pinus halepensis. Plant, Cell and Environment, 24(9): 905-916.
Amjad Hameed, A.H., Noreen Bibi, N.B., Javed Akhter, J.A., & Nayyer Iqbal, N.I. (2011). Differential changes in antioxidants, proteases, and lipid peroxidation in flag leaves of wheat genotypes under different levels of water deficit conditions. Plant Physiology and Biochemistry, 49: 178-185.
Anjum, S., Wang, L., Farooq, M., Hussain, M., Xue, L., & Zou, C. (2011). Brassinolide application improves the drought tolerance in maize through modulation of enzymatic antioxidants and leaf gas exchange. Journal of Agronomy and Crop Science, 197(3): 177-185.
Armand, N., Amiri, H., & Ismaili, A. (2016). Interaction of methanol spray and water‐deficit stress on photosynthesis and biochemical characteristics of Phaseolus vulgaris L. cv. Sadry. Photochemistry and Photobiology, 92(1): 102-110.
Arora, P., Bhardwaj, R., & Kumar Kanwar, M. (2010). 24-epibrassinolide induced antioxidative defense system of Brassica juncea L. under Zn metal stress. Physiology and Molecular Biology of Plants, 16: 285-293.
Asghari, M., & Zahedipour, P. (2016). 24-Epibrassinolide acts as a growth-promoting and resistance-mediating factor in strawberry plants. Journal of Plant Growth Regulation, 35: 722-729.
Bajguz, A. (2000). Effect of brassinosteroids on nucleic acids and protein content in cultured cells of Chlorella vulgaris. Plant Physiology and Biochemistry, 38(3): 209-215.
Bajguz, A., & Hayat, S. (2009). Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiology and Biochemistry, 47(1): 1-8.
Bastos, E.A., Nascimento, S.P.D., Silva, E.M.D., Freire Filho, F.R., & Gomide, R.L. (2011). Identification of cowpea genotypes for drought tolerance. Revista Ciência Agronômica, 42: 100-107.
Beauchamp, C., & Fridovich, I. (1971). Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry, 44(1): 276-287.
Bera, A., Pramanik, K., & Mandal, B. (2014). Response of biofertilizers and homo-brassinolide on growth, yield and oil content of sunflower (Helianthus annuus L.). African Journal of Agricultural Research, 9(48): 3494-3503.
Bhardwaj, R., Arora, N., Sharma, P., & Arora, H.K. (2007). Effects of 28-homobrassinolide on seedling growth, lipid peroxidation and antioxidative enzyme activities under nickel stress in seedlings of Zea mays L. Asian Journal of Plant Sciences 6(5): 765-772.
Choudhury, F.K., & Khatun, M. (2022). Enhancing drought tolerance in mungbean (Vigna radiata) through brassinosteroid application: Effects on chlorophyll content and antioxidant activity. Journal of Plant Physiology, 272: 153-165.
Eraslan, F., Inal, A., Savasturk, O., & Gunes, A. (2007). Changes in antioxidative system and membrane damage of lettuce in response to salinity and boron toxicity. Scientia Horticulturae, 114(1): 5-10.
Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., & Basra, S.M. (2009). Plant drought stress: effects, mechanisms and management. Sustainable Agriculture, 29: 185-211.
Ghasemi, M., Jahanbin, S., Latifmanesh, H., Farajee, H., & Mirshekari, A. (2021). Effect of brassinolide foliar application on some physiological and agronomic characteristics of sunflower (Helianthus annuus L.) under drought stress conditions. Journal of Crop Production, 14(1): 31-48. [In Persian]
Habibi, G. (2013). Effect of drought stress and selenium spraying on photosynthesis and antioxidant activity of spring barley. Acta Agriculturae Slovenica, 101(1): 31–39-31–39.
Hayat, S., Alyemeni, M.N., & Hasan, S.A. (2012). Foliar spray of brassinosteroid enhances yield and quality of Solanum lycopersicum under cadmium stress. Saudi journal of biological sciences, 19(3): 325-335.
Heath, R.L., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of biochemistry and biophysics, 125(1): 189-198.
Hojati, M., Modarres-Sanavy, S.A.M., Karimi, M., & Ghanati, F. (2011). Responses of growth and antioxidant systems in Carthamus tinctorius L. under water deficit stress. Acta physiologiae plantarum, 33: 105-112.
Hosseinzadeh, S., Amiri, H., & Ismaili, A. (2016). Effect of vermicompost fertilizer on photosynthetic characteristics of chickpea (Cicer arietinum L.) under drought stress. Photosynthetica, 54: 87-92.
Irigoyen, J., Einerich, D., & Sánchez‐Díaz, M. (1992). Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. Physiologia plantarum, 84(1): 55-60.
Jiang, M., & Zhang, J. (2001). Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings. Plant and Cell Physiology, 42(11): 1265-1273.
Kajal Sengupta, K.S., Mitra, S., & Manabendra Ray, M.R. (2009). Effect of brassinolide on growth and yield of summer greengram crop. Journal of Crop and Weed, 7(2): 152-154.
Khripach, V.A., Zhabinskii, V., & De Groot, A.E. (1998). Brassinosteroids: a new class of plant hormones. Academic Press. 456 p.
Li, K., Wang, H., Han, G., Wang, Q., & Fan, J. (2008). Effects of brassinolide on the survival, growth and drought resistance of Robinia pseudoacacia seedlings under water-stress. New Forests, 35: 255-266.
Liang, X., Zhang, L., Natarajan, S.K., & Becker, D.F. (2013). Proline mechanisms of stress survival. Antioxidants and Redox Signaling, 19(9): 998-1011.
Liu, Z., Li, L., Luo, Z., Zeng, F., Jiang, L., & Tang, K. (2016). Effect of brassinolide on energy status and proline metabolism in postharvest bamboo shoot during chilling stress. Postharvest Biology and Technology, 111: 240-246.
Lizana, C., Wentworth, M., Martinez, J.P., Villegas, D., Meneses, R., Murchie, E.H., Pastenes, C., Lercari, B., Vernieri, P., & Horton, P. (2006). Differential adaptation of two varieties of common bean to abiotic stress: I. Effects of drought on yield and photosynthesis. Journal of Experimental Botany, 57(3): 685-697.
MacAdam, J.W., Nelson, C.J., & Sharp, R.E. (1992). Peroxidase activity in the leaf elongation zone of tall fescue: I. Spatial distribution of ionically bound peroxidase activity in genotypes differing in length of the elongation zone. Plant Physiology, 99(3): 872-878.
Malik, A.A., Li, W.G., Lou, L.N., Weng, J.H., & Chen, J.F. (2010). Biochemical/physiological characterization and evaluation of in vitro salt tolerance in cucumber. African Journal of Biotechnology, 9(22): 3298-3302.
Medrano, H., Escalona, J.M., Bota, J., Gulías, J., & Flexas, J. (2002). Regulation of photosynthesis of C3 plants in response to progressive drought: stomatal conductance as a reference parameter. Annals of Botany, 89(7): 895-905.
Mishra, A., & Choudhuri, M. (1999). Effects of salicylic acid on heavy metal-induced membrane deterioration mediated by lipoxygenase in rice. Biologia Plantarum, 42: 409-415.
Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7(9): 405-410.
Mohammadi, M., Pouryousef, M., & Tavakoli, A. (2021). The effect of epibrassinolide application on photosynthetic material allocation, drought tolerance, and seed yield of two Pinto bean genotypes (Phaseolus vulgaris L.). Iranian Journal of Field Crops Research, 19(2): 169-184.  [In Persian]
Muñoz‐Perea, C.G., Terán, H., Allen, R.G., Wright, J.L., Westermann, D.T., & Singh, S.P. (2006). Selection for drought resistance in dry bean landraces and cultivars. Crop science, 46(5): 2111-2120.
Najaphy, A., Khamssi, N.N., Mostafaie, A., & Mirzaee, H. (2010). Effect of progressive water deficit stress on proline accumulation and protein profiles of leaves in chickpea. African Journal of Biotechnology, 9(42): 7033-7036.
Niknam, V., Razavi, N., Ebrahimzadeh, H., & Sharifizadeh, B. (2006). Effect of NaCl on biomass, protein and proline contents, and antioxidant enzymes in seedlings and calli of two Trigonella species. Biologia Plantarum, 50(4): 591-596.
Özdemir, F., Bor, M., Demiral, T., & Türkan, İ. (2004). Effects of 24-epibrassinolide on seed germination, seedling growth, lipid peroxidation, proline content and antioxidative system of rice (Oryza sativa L.) under salinity stress. Plant Growth Regulation, 42(3): 203-211.
Paquin, R., & Lechasseur, P. (1979). Observations sur une méthode de dosage de la proline libre dans les extraits de plantes. Canadian Journal of Botany, 57(18): 1851-1854.
Petropoulos, S.A., Fernandes, Â., Plexida, S., Chrysargyris, A., Tzortzakis, N., Barreira, J.C.M., Barros, L., & Ferreira, I.C.F.R. (2020). Biostimulants Application Alleviates Water Stress Effects on Yield and Chemical Composition of Greenhouse Green Bean (Phaseolus vulgaris L.). Agronomy, 10(2): 1-26.
Rady, M.M. (2011). Effect of 24-epibrassinolide on growth, yield, antioxidant system and cadmium content of bean (Phaseolus vulgaris L.) plants under salinity and cadmium stress. Scientia Horticulturae, 129(2): 232-237.
Rattan, A., Kapoor, D., Kapoor, N., Bhardwaj, R., & Sharma, A. (2020). Brassinosteroids regulate functional components of antioxidative defense system in salt stressed maize seedlings. Journal of Plant Growth Regulation, 39: 1465-1475.
Salehi, F., Bahrani, M.J., Kazemeini, S.A.R., Pakniyat, H., & Karimian, N.A. (2013). Influence of soil incorporating wheat residues on agronomic and physiological traits of red common bean. Plant Productions, 36(1): 89-101. [In Persian]
Salehpour, M., Ebadi, A., Izadi, M., & Jamaati-e-Somarin, S. (2009). Evaluation of water stress and nitrogen fertilizer effects on relative water content, membrane stability index, chlorophyll and some other traits of lentils (Lens culinaris L.) under hydroponics conditions. Research Journal of Environmental Sciences, 3(1): 103–109.
Sharma, P., Jha, A.B., Dubey, R.S., & Pessarakli, M. (2012). Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions. Journal of Botany, 2012: 1-26.
Shenkut, A.A., & Brick, M.A. (2003). Traits associated with dry edible bean (Phaseolus vulgaris L.) productivity under diverse soil moisture environments. Euphytica, 133(3), 339-347.
Shopova, E., Katerova, Z., Brankova, L., Dimitrova, L., Sergiev, I., Todorova, D., & Talaat, N. B. (2021). Modulation of physiological stress response of Triticum aestivum L. to glyphosate by brassinosteroid application. Life, 11(11): 1156-1170.
Siddiqui, M.H., Al-Khaishany, M.Y., Al-Qutami, M.A., Al-Whaibi, M.H., Grover, A., Ali, H.M., Al-Wahibi, M.S., & Bukhari, N.A. (2015). Response of Different Genotypes of Faba Bean Plant to Drought Stress. International Journal of Molecular Sciences, 16(5): 10214-10227.
Svetleva, D., Krastev, V., Dimova, D., Mitrovska, Z., Miteva, D., Parvanova, P., & Chankova, S. (2012). Drought tolerance of Bulgarian common bean genotypes, characterised by some biochemical markers for oxidative stress. Journal of Central European Agriculture, 13(2): 349-361.
Talaat, N.B., & Shawky, B.T. (2013). 24-Epibrassinolide alleviates salt-induced inhibition of productivity by increasing nutrients and compatible solutes accumulation and enhancing antioxidant system in wheat (Triticum aestivum L.). Acta physiologiae plantarum, 35(3), 729-740.
Talaat, N.B., & Shawky, B.T. (2016). Dual Application of 24-Epibrassinolide and Spermine Confers Drought Stress Tolerance in Maize (Zea mays L.) by Modulating Polyamine and Protein Metabolism. Journal of Plant Growth Regulation, 35(2): 518-533.
Thussagunpanit, J., Jutamanee, K., Sonjaroon, W., Kaveeta, L., Chai-Arree, W., Pankean, P., & Suksamrarn, A. (2015). Effects of brassinosteroid and brassinosteroid mimic on photosynthetic efficiency and rice yield under heat stress. Photosynthetica, 53(2): 312-320.
Van Kooten, O., & Snel, J.F. (1990). The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynthesis research, 25: 147-150.
Verma, A., Malik, C.P., & Gupta, V.K. (2012). In Vitro Effects of Brassinosteroids on the Growth and Antioxidant Enzyme Activities in Groundnut. International Journal of Research in Agronomy, 2012: 1-8.
Yasar, F., Uzal, O., & Ozpay, T. (2010). Changes of the lipid peroxidation and chlorophyll amount of green bean genotypes under drought stress. African Journal of Agricultural Research, 5(19): 2705-2709.
Yuan, G.F., Jia, C.G., Li, Z., Sun, B., Zhang, L.P., Liu, N., & Wang, Q.M. (2010). Effect of brassinosteroids on drought resistance and abscisic acid concentration in tomato under water stress. Scientia Horticulturae, 126(2): 103-108.
Zadehbagheri, M., Kamelmanesh, M., Javanmardi, S., & Sharafzadeh, S. (2012). Effect of drought stress on yield and yield components, relative leaf water content, proline and potassium ion accumulation in different white bean (Phaseolus vulgaris L.) genotype. African Journal of Agricultural Research, 7(42), 5661-5670.
Zeid, I.M., & Shedeed, Z.A. (2006). Response of alfalfa to putrescine treatment under drought stress. Biologia Plantarum, 50(4): 635-640.
Zendedel_Sabet, M., Sharifi, P., & Gholami, M. (2018). Effect of Plant Density on Seed Yield and Morphological Characteristics of Some Guilan Local Bean Lines. Plant Productions, 41(3): 1-12. [In Persian]
Zhang, A., Zhang, J., Zhang, J., Ye, N., Zhang, H., Tan, M., & Jiang, M. (2010). Nitric Oxide Mediates Brassinosteroid-Induced ABA Biosynthesis Involved in Oxidative Stress Tolerance in Maize Leaves. Plant and Cell Physiology, 52(1): 181-192.
Zhang, M., Zhai, Z., Tian, X., Duan, L., & Li, Z. (2008). Brassinolide alleviated the adverse effect of water deficits on photosynthesis and the antioxidant of soybean (Glycine max L.). Plant Growth Regulation, 56(3): 257-264.