References
Aalaei, S. (2019). Essential oil content and composition of Dracocephalum moldavica under different irrigation regimes. International Journal of Horticultural Science and Technology, 6: 167-175.
Ali, H. M. M., & Perveen, S. (2020). Effect of foliar applied triacontanol on wheat (Triticum aestivum L.) under arsenic stress: a study of changes in growth, yield and photosynthetic characteristics. Physiology and Molecular Biology of Plants, 26: 1215-1224.
Amini, R., Ebrahimi, A., & Nasab, A. D. M. (2020). Moldavian balm (Dracocephalum moldavica L.) essential oil content and composition as affected by sustainable weed management treatments. Industrial Crops and Products, 150: 112416.
Borghei, S.F., & A. Azizi. (2018). Assessing diversity of landraces of Dracocephalum moldavica from north west of Iran using agro-morphological and phytochemical traits. Journal of Plant Production Technology, 18: 1-16. [In Persian]
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2): 248-254.
Chang, C. C., Yang, M. H., Wen, H. M., & Chern, J. C. (2002). Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis, 10(3): 101-115.
Dmitruk, M., A. Sulborska, B. Zuraw, E. Stawiarz, & E. Weryszko-Chmielewska. (2019). Sites of secretion of bioactive compounds in leaves of Dracocephalum moldavica (L.): Anatomical, histochemical, and essential oil study. Brazilian Journal of Botany. 42: 701-715.
Eriksen, A. B., Sellden, G., Skogen, D., & Nilsen, S. (1981). Comparative analyses of the effect of triacontanol on photosynthesis, photorespiration and growth of tomato (C 3-plant) and maize (C 4-plant). Planta, 152: 44-49.
Fan, H., Du, C., & Guo, S. (2012). Effect of nitric oxide on proline metabolism in cucumber seedlings under salinity stress. Journal of the American Society for Horticultural Science, 137: 127-133.
Hashmi, N., Khan, M. M. A., Naeem, M., Idrees, M., Aftab, T., & Moinuddin, T. (2010). Ameliorative effect of triacontanol on the growth, photosynthetic pigments, enzyme activities and active constituents of essential oil of Ocimum basilicum L. Medicinal and Aromatic Plant Science and Biotechnology, 5: 20-24.
Hayat, S., Mori, M., Pichtel, J., Ahmad, I., & Ahmad, A. (Eds.). (2009). Nitric oxide in plant physiology. John Wiley & Sons, Incorporated..
Hossain, A., Pamanick, B., Venugopalan, V. K., Ibrahimova, U., Rahman, M. A., Siyal, A. L., ... & Aftab, T. (2022). Emerging roles of plant growth regulators for plants adaptation to abiotic stress–induced oxidative stress. Emerging Plant Growth Regulators in Agriculture. Academic Press.
I.R. Of Iran Meteorological Organization. Weather data request system: https://data.irimo.ir/
Islam, S., Zaid, A., & Mohammad, F. (2021). Role of triacontanol in counteracting the ill effects of salinity in plants: a review. Journal of Plant Growth Regulation, 40(1): 1-10.
Khandaker, M. M., Faruq, G., Rahman, M. M., Sofian-Azirun, M., & Boyce, A. N. (2013). The influence of 1‐triacontanol on the growth, flowering, and quality of potted Bougainvillea plants (Bougainvillea glabra var.“Elizabeth Angus”) under natural conditions. The Scientific World Journal, 2013(1): 308651.
Leshem, Y.Y., Haramaty, E., Liuz, D., Mali, K.Z., Safer, Y., & Riotman, L. (2017). Effect of stress nitric oxide: interaction between cholorophyll florescence, galactolipid fluidity and lipoxygenase activity. Plant Physiology and Biochemistry, 35: 573-579.
Lesniak, A.P., Haug, A., & Ries, S.K. (2000). Stimulation of ATPase activity in barley (Hordeum vulgare) root plasma membrane after treatment of intact tissues and cell free extracts with TRIA contanol. Physiologia Plantarum, 68(1): 20-26.
Li, X., Wang, S., Chen, X., Cong, Y., Cui, J., Shi, Q & Diao, M. (2022). The positive effects of exogenous sodium nitroprusside on the plant growth, photosystem II efficiency and Calvin cycle of tomato seedlings under salt stress. Scientia Horticulturae, 299: 111016.
Malik, C. P., & Singh, M. B. (1980). Plant enzymology and histo-enzymology.
Mathew, S., Abraham, T. E., & Zakaria, Z. A. (2015). Reactivity of phenolic compounds towards free radicals under in vitro conditions. Journal of Food Science and Technology, 52: 5790-5798.
Naeem, M. M. M. A., Khan, M. M. A., Moinuddin, Idrees, M., & Aftab, T. (2011). Triacontanol-mediated regulation of growth and other physiological attributes, active constituents and yield of Mentha arvensis L. Plant Growth Regulation, 65: 195-206.
Narimani, R., Moghaddam, M., & Shokouhi, D. (2017). The effect of different concentrations of sodium nitroprusside in alleviating oxidative damages caused by water stress of polyethylene glycol in medicinal plant of catmint hairless under in vitro condition. Plant Productions, 40(3): 77-88. [In Persian]
Nasibi, F., & Kalantari, K.M., (2009). Influence of nitric oxide in protection of tomato seedling against oxidative stress induced by osmotic stress. Acta Physiologiae Plantarum, 31(5): 1037-1044.
Pang, Q., Chen, X., Lv, J., Li, T., Fang, J., & Jia, H. (2020). Triacontanol promotes the fruit development and retards fruit senescence in strawberry: A transcriptome analysis. Plants, 9(4): 488-493.
Perveen, S., Shahbaz, M., & Ashraf, M. (2011). Modulation in activities of antioxidant enzymes in salt stressed and non-stressed wheat (Triticum aestivum L.) plants raised from seed treated with triacontanol. Pakistan Journal of Botany, 43(5): 2463-2468.
Perveen, S., Shahbaz, M., & Ashraf, M. (2013). Influence of foliar-applied triacontanol on growth, gas exchange characteristics, and chlorophyll fluorescence at different growth stages in wheat under saline conditions. Photosynthetica, 51: 541-551.
Perveen, S., Shahbaz, M., & Ashraf, M. (2014). Triacontanol-induced changes in growth, yield, leaf water relations, oxidative defense system, minerals, and some key osmoprotectants in Triticum aestivum under saline conditions. Turkish Journal of Botany, 38(5): 896-913.
Poór, P., Laskay, G., & Tari, I. (2015). Role of nitric oxide in salt stress-induced programmed cell death and defense mechanisms. Nitric Oxide Action in Abiotic Stress Responses in Plants, 2: 193-219.
Ries, S., Wert, V.O., Leary, D., & Nair, M. (1990). 9-β -L(+)- Adenosine: a new naturall yoccurring plant growth substance elicited by triacontanol in rice. Plant Growth Regulation, 9: 263-273.
Sami, F., Siddiqui, H., & Hayat, S. (2021). Nitric oxide-mediated enhancement in photosynthetic efficiency, ion uptake and carbohydrate metabolism that boosts overall photosynthetic machinery in mustard plants. Journal of Plant Growth Regulation, 40(3): 1088-1110.
Sheokand, S., Bhankar, V., & Sawhney, V. (2010). Ameliorative effect of exogenous nitric oxide on oxidative metabolism in NaCl treated chickpea plants. Brazilian Journal of Plant Physiology, 22: 81-90.
Singh, M., Khan, M.M.A., Moinuddin & Naeem, M., (2012). Augmentation of nutraceuticals, productivity and quality of ginger (Zingiber officinale Rosc.) through triacontanol application. Plant Biosystems, 146(1): 106-113.
Swamy, K., Ram, N., & Rao, S. (2017). Influence of 28-homobrassinolid on growth, photosynthesis metabolite and essential oil of geranium. American Journal of Plant Physiology, 3(4): 173-179.
Tabatabaei, S.J. (2010). Principles of plant mineral nutrition, Tabriz: Univercity Tabriz. ]In Persian[.
Taghizadeh, B., H., Alizadeh Salteh, S., & Matloobi, M. (2023). The effect of fulvic acid and triacantanol foliar application on some biochemical and physiological properties and active ingredients of Calendula officinalis. Journal of Horticultural Science, 37(1): 167-179. [In Persian]
Verma, T., Bhardwaj, S., Singh, J., Kapoor, D., & Prasad, R. (2022). Triacontanol as a versatile plant growth regulator in overcoming negative effects of salt stress. Journal of Agriculture and Food Research, 10: 100351.
Waqas, M., Shahzad, R., Khan, A.L., Asaf, S., Kim, Y.H., Kang, S.M., Bilal, S., Hamayun, M., & Lee, I.J. (2016). Salvaging effect of triacontanol on plant growth, thermotolerance, macro-nutrient content, amino acid concentration and modulation of defense hormonal levels under heat stress. Plant Physiology and Biochemistry, 99(1): 118-125.
Yadollahi, P., Asgharipour, M., Sheikhpour, S., Jabbari, B., & Ghasemi, H. (2015). Effects of different levels of sodium nitroprusside and arsenic on fruit yield and some biochemical characteristics of bitter melon (Momordica charantia L.). Journal of Plant Ecophysiology, 7(21): 221-234. [In Persian]
Zhao, J., Davis, L. C., & Verpoorte, R. (2005). Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnology Advances, 23(4): 283-333.