نوع مقاله : علمی پژوهشی - گیاهان دارویی و معطر

نویسندگان

1 دانشیار، گروه علوم باغبانی دانشکده کشاورزی، دانشگاه تبریز، شهر تبریز، ایران

2 دانش‌آموختۀ کارشناسی ارشد، گروه علوم باغبانی دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران

3 دانش‌آموختۀ کارشناسی ارشد، گروه علوم باغبانی دانشکده کشاورزی، دانشگاه مراغه، مراغه، ایران

چکیده

سدیم نیتروپروساید و تریاکانتانول به‌عنوان تنظیم‌کنندۀ رشد گیاهی، رشد و نمو گیاه را بهبود بخشیده و تولید متابولیت‌های ثانویه را تحت تأثیر قرار می‌دهند. همچنین تریاکانتانول به‌عنوان یک محرک رشد گیاهی، نقش محوری در تنظیم بسیاری از فرآیندهای بیوشیمیایی و فیزیولوژیک گیاهان از جمله فتوسنتز ایفا می‌کند. گیاه بادرشبی (بادرشبو)، گیاهی علفی، یک ساله و معطر از تیرۀ نعناعیان می باشد که در طب سنتی از جایگاه ویژه‌ ای  برخوردار است. با توجه به اهمیت اقتصادی گیاه دارویی بادرشبی، در این پژوهش اثرات محلول‌پاشی سدیم نیتروپروساید و تریاکانتانول بر تغییرات مورفولوژیک و عملکرد کمی و کیفی متابولیت‌های ثانویه به‌ویژه بازدۀ اسانس گیاه دارویی بادرشبی مورد بررسی قرار گرفت. بدین منظور، آزمایشی به‌صورت فاکتوریل در قالب طرح بلوک‌های کامل تصادفی با سه تکرار در سال زراعی 1395-1394 اجرا شد. فاکتورهای آزمایش شامل محلولپاشی در مرحلۀ گلدهی با سدیم نیتروپروساید (SNP) و تریاکانتانول (Tria) هرکدام در سه سطح صفر ، 0/5 و 1 میلی‌ مولار بود. در نهایت صفات رشدی (سطح برگ و تعداد شاخۀ جانبی)، وزن تر و خشک شاخساره، عملکرد و درصد اسانس، مواد جامد محلول، محتوای پروتئین، محتوای فلاونوئید و فنل کل و محتوای نیتروژن، فسفر، پتاسیم و سدیم در مرحلۀ گلدهی کامل مورد بررسی قرار گرفت. نتایج به دست آمده در پژوهش حاضر نشان داد؛ برهم‌ کنش غلظت های مختلف تریاکانتانول و سدیم نیتروپروساید اثر معنیداری بر سطح برگ و تعداد شاخۀ جانبی داشت. همچنین سدیم نیتروپروساید در غلظت یک میلی‌ مولار موجب افزایش قابل توجه وزن تر و خشک اندام هوایی بوته گردید. محلولپاشی تریاکانتانول و سدیم نیتروپروساید اثر معنی داری بر محتوای عناصر بافت برگ داشت و بیشترین افزایش در غلظت یک میلی مولار این دو تیمار ثبت گردید. همچنین محلولپاشی سدیم نیتروپروساید به تنهایی و به همراه تریاکانتانول اثر معنی داری بر میزان فنل، فلاونوئید و پروتئین محلول کل در سطح یک درصد داشت، به گونه‌ای که تیمار یک میلی مولار سدیم نیتروپروساید به همراه یک میلی مولار تریاکانتانول به ترتیب باعث افزایش 62/9، 51/2 و 34/9 درصدی میزان فنل، فلاونوئید و پروتئین محلول کل در مقایسه با تیمار شاهد شد. طبق نتایج به دست آمده؛ تیمار یک میلی مولار تریاکانتانول بههمراه یک میلی مولار سدیم نیتروپروساید بیشترین تأثیر را بر عملکرد اسانس گیاه بادرشبی داشت و باعث افزایش 207 درصدی عملکرد اسانس در مقایسه با تیمار شاهد شد. نتایج این تحقیق نشان داد کاربرد سدیم نیتروپروساید و تریاکانتانول با غلظت مناسب، اثرات قابل توجهی بر رشد و عملکرد گیاه بادرشبی داشته و تیمار یک میلی مولار تریاکانتانول به همراه یک میلی مولار سدیم نیتروپروساید به عنوان تیمار بهینه در مطالعه حاضر معرفی گردید.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

The effect of sodium nitroprusside and triacontanol on the morphological and phytochemical characteristics of Moldavian balm (Dracocephalum moldavica L.) in the full bloom stage

نویسندگان [English]

  • Saeideh Alizadeh Salteh 1
  • Samaneh Khalaf Khani 2
  • Parinaz Ferdowsi Qebchaq 3

1 Associate Professor, Department of Horticultural Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, Iran Tabriz, Iran.

2 M.Sc. Graduate, Department of Horticultural Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, Iran

3 M.Sc. Graduate, Department of Horticultural Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, Iran

چکیده [English]

Introduction
Sodium nitroprusside (SNP) and triacontanol (Tria), as plant growth regulators, enhance plant growth and development and influence the production of secondary metabolites. Triacontanol specifically plays a key role in regulating various biochemical and physiological processes, including photosynthesis. This leads to increased growth, yield, and product quality, as well as improvement in active compounds in medicinal and aromatic plants under normal or stressful conditions. Triacontanol can exert this effect alone or in interaction with other hormones and plant growth regulators. Sodium nitroprusside is recognized as a plant growth regulator, acting as a mediator to perform its regulatory role. It is commonly used as a nitric oxide-releasing compound in plants, which, in solution, is light-sensitive, and its decomposition is accelerated by oxygen and high temperatures. Nitric oxide itself is considered a reactive nitrogen species that can act as a signaling molecule, mediating adaptive responses to biotic and abiotic stresses in plants. Furthermore, it functions as an antioxidant, scavenging free radicals and eliminating them. Dracocephalum moldavica L., commonly known as Moldavian balm, is an annual, aromatic herb from the mint family (Lamiaceae). Native to Central Asia and domesticated in Central and Eastern Europe, it holds significant economic and medicinal value. This study investigates the effects of SNP and Tria on the morphological changes, as well as, quantitative and qualitative performance of secondary metabolites, especially the essential oil yield of D. moldavica. 
Materials and Methods
This research was conducted as a factorial experiment using a completely randomized design with three replications at the Faculty of Agriculture, Tabriz University. The experimental factors included foliar application of three concentrations each of sodium nitroprusside (0, 0.5 and 1 mM) and tricanthanol (0, 0.5 and 1 mM) during the flowering stage. The evaluated traits included growth parameters (leaf area and number of lateral branches), shoot yield (fresh and dry weight), essential oil yield and percentage, biochemical characteristics (soluble solids, protein, flavonoid and total phenol content) and nutrient content (nitrogen, phosphorus, potassium and sodium) at the full bloom stage.
Results and Discussion
The results demonstrated significant effects of SNP and Tria interactions on leaf area and the number of lateral branches. SNP at 1 mM notably increased shoot fresh and dry weight. Different concentrations of Tria significantly influenced total soluble solids. Foliar applications of SNP and Tria significantly improved leaf tissue nutrient content, with the highest increases observed at 1 mM. Additionally, treatments with SNP and Tria, individually and in combination, significantly increased phenol, flavonoid and total soluble protein contents. The combination of 1mM SNP and 1mM Tria led to increases of 62.93 %, 51.24 %, and 34.92% in phenol, flavonoid, and protein content, respectively, compared to the control. The same treatment also increased the essential oil yield by 207% compared to the control treatment.
Conclusion
The study underscore the significant impact of appropriate concentrations of sodium nitroprusside and triacantanol on the growth and yield of Moldavian Balm. Among all treatments, 1mM triacantanol combined with 1mM sodium nitroprusside was identified as the optimal treatment, offering substantial improvements in growth parameters, phytochemical content, and essential oil yield. 

کلیدواژه‌ها [English]

  • Essential oil
  • Growth regulator
  • Medicinal plants
  • Moldavian balm
References
Aalaei, S. (2019). Essential oil content and composition of Dracocephalum moldavica under different irrigation regimes. International Journal of Horticultural Science and Technology, 6: 167-175.
Ali, H. M. M., & Perveen, S. (2020). Effect of foliar applied triacontanol on wheat (Triticum aestivum L.) under arsenic stress: a study of changes in growth, yield and photosynthetic characteristics. Physiology and Molecular Biology of Plants, 26: 1215-1224.
Amini, R., Ebrahimi, A., & Nasab, A. D. M. (2020). Moldavian balm (Dracocephalum moldavica L.) essential oil content and composition as affected by sustainable weed management treatments. Industrial Crops and Products, 150: 112416.
Borghei, S.F., & A. Azizi. (2018). Assessing diversity of landraces of Dracocephalum moldavica from north west of Iran using agro-morphological and phytochemical traits. Journal of Plant Production Technology, 18: 1-16. [In Persian]
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2): 248-254.
Chang, C. C., Yang, M. H., Wen, H. M., & Chern, J. C. (2002). Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis10(3): 101-115.
Dmitruk, M., A. Sulborska, B. Zuraw, E. Stawiarz, & E. Weryszko-Chmielewska. (2019). Sites of secretion of bioactive compounds in leaves of Dracocephalum moldavica (L.): Anatomical, histochemical, and essential oil study. Brazilian Journal of Botany. 42: 701-715.
Eriksen, A. B., Sellden, G., Skogen, D., & Nilsen, S. (1981). Comparative analyses of the effect of triacontanol on photosynthesis, photorespiration and growth of tomato (C 3-plant) and maize (C 4-plant). Planta152: 44-49.
Fan, H., Du, C., & Guo, S. (2012). Effect of nitric oxide on proline metabolism in cucumber seedlings under salinity stress. Journal of the American Society for Horticultural Science, 137: 127-133.
Hashmi, N., Khan, M. M. A., Naeem, M., Idrees, M., Aftab, T., & Moinuddin, T. (2010). Ameliorative effect of triacontanol on the growth, photosynthetic pigments, enzyme activities and active constituents of essential oil of Ocimum basilicum L. Medicinal and Aromatic Plant Science and Biotechnology, 5: 20-24.‏
Hayat, S., Mori, M., Pichtel, J., Ahmad, I., & Ahmad, A. (Eds.). (2009). Nitric oxide in plant physiology. John Wiley & Sons, Incorporated..
Hossain, A., Pamanick, B., Venugopalan, V. K., Ibrahimova, U., Rahman, M. A., Siyal, A. L., ... & Aftab, T. (2022). Emerging roles of plant growth regulators for plants adaptation to abiotic stress–induced oxidative stress. Emerging Plant Growth Regulators in Agriculture. Academic Press.
I.R. Of Iran Meteorological Organization. Weather data request system: https://data.irimo.ir/
Islam, S., Zaid, A., & Mohammad, F. (2021). Role of triacontanol in counteracting the ill effects of salinity in plants: a review. Journal of Plant Growth Regulation40(1): 1-10.
Khandaker, M. M., Faruq, G., Rahman, M. M., Sofian-Azirun, M., & Boyce, A. N. (2013). The influence of 1‐triacontanol on the growth, flowering, and quality of potted Bougainvillea plants (Bougainvillea glabra var.“Elizabeth Angus”) under natural conditions. The Scientific World Journal2013(1): 308651.
Leshem, Y.Y., Haramaty, E., Liuz, D., Mali, K.Z., Safer, Y., & Riotman, L. (2017). Effect of stress nitric oxide: interaction between cholorophyll florescence, galactolipid fluidity and lipoxygenase activity. Plant Physiology and Biochemistry, 35: 573-579.
Lesniak, A.P., Haug, A., & Ries, S.K. (2000). Stimulation of ATPase activity in barley (Hordeum vulgare) root plasma membrane after treatment of intact tissues and cell free extracts with TRIA contanol. Physiologia Plantarum, 68(1): 20-26.
Li, X., Wang, S., Chen, X., Cong, Y., Cui, J., Shi, Q & Diao, M. (2022). The positive effects of exogenous sodium nitroprusside on the plant growth, photosystem II efficiency and Calvin cycle of tomato seedlings under salt stress. Scientia Horticulturae299: 111016.
Malik, C. P., & Singh, M. B. (1980). Plant enzymology and histo-enzymology.
Mathew, S., Abraham, T. E., & Zakaria, Z. A. (2015). Reactivity of phenolic compounds towards free radicals under in vitro conditions. Journal of Food Science and Technology52: 5790-5798.
Naeem, M. M. M. A., Khan, M. M. A., Moinuddin, Idrees, M., & Aftab, T. (2011). Triacontanol-mediated regulation of growth and other physiological attributes, active constituents and yield of Mentha arvensis L. Plant Growth Regulation65: 195-206.
Narimani, R., Moghaddam, M., & Shokouhi, D. (2017). The effect of different concentrations of sodium nitroprusside in alleviating oxidative damages caused by water stress of polyethylene glycol in medicinal plant of catmint hairless under in vitro condition. Plant Productions, 40(3): 77-88. [In Persian]
Nasibi, F., & Kalantari, K.M., (2009). Influence of nitric oxide in protection of tomato seedling against oxidative stress induced by osmotic stress. Acta Physiologiae Plantarum, 31(5): 1037-1044.
Pang, Q., Chen, X., Lv, J., Li, T., Fang, J., & Jia, H. (2020). Triacontanol promotes the fruit development and retards fruit senescence in strawberry: A transcriptome analysis. Plants, 9(4): 488-493.
Perveen, S., Shahbaz, M., & Ashraf, M. (2011). Modulation in activities of antioxidant enzymes in salt stressed and non-stressed wheat (Triticum aestivum L.) plants raised from seed treated with triacontanol. Pakistan Journal of Botany, 43(5): 2463-2468.
Perveen, S., Shahbaz, M., & Ashraf, M. (2013). Influence of foliar-applied triacontanol on growth, gas exchange characteristics, and chlorophyll fluorescence at different growth stages in wheat under saline conditions. Photosynthetica, 51: 541-551.‏
Perveen, S., Shahbaz, M., & Ashraf, M. (2014). Triacontanol-induced changes in growth, yield, leaf water relations, oxidative defense system, minerals, and some key osmoprotectants in Triticum aestivum under saline conditions. Turkish Journal of Botany, 38(5): 896-913.‏
Poór, P., Laskay, G., & Tari, I. (2015). Role of nitric oxide in salt stress-induced programmed cell death and defense mechanisms. Nitric Oxide Action in Abiotic Stress Responses in Plants, 2: 193-219.
Ries, S., Wert, V.O., Leary, D., & Nair, M. (1990). 9-β -L(+)- Adenosine: a new naturall yoccurring plant growth substance elicited by triacontanol in rice. Plant Growth Regulation, 9: 263-273.
Sami, F., Siddiqui, H., & Hayat, S. (2021). Nitric oxide-mediated enhancement in photosynthetic efficiency, ion uptake and carbohydrate metabolism that boosts overall photosynthetic machinery in mustard plants. Journal of Plant Growth Regulation40(3): 1088-1110.
Sheokand, S., Bhankar, V., & Sawhney, V. (2010). Ameliorative effect of exogenous nitric oxide on oxidative metabolism in NaCl treated chickpea plants. Brazilian Journal of Plant Physiology, 22: 81-90.‏
Singh, M., Khan, M.M.A., Moinuddin & Naeem, M., (2012). Augmentation of nutraceuticals, productivity and quality of ginger (Zingiber officinale Rosc.) through triacontanol application. Plant Biosystems, 146(1): 106-113.
Swamy, K., Ram, N., & Rao, S. (2017). Influence of 28-homobrassinolid on growth, photosynthesis metabolite and essential oil of geranium. American Journal of Plant Physiology, 3(4): 173-179.
Tabatabaei, S.J. (2010). Principles of plant mineral nutrition, Tabriz: Univercity Tabriz. ]In Persian[.
Taghizadeh, B., H., Alizadeh Salteh, S., & Matloobi, M. (2023). The effect of fulvic acid and triacantanol foliar application on some biochemical and physiological properties and active ingredients of Calendula officinalisJournal of Horticultural Science37(1): 167-179. [In Persian]
Verma, T., Bhardwaj, S., Singh, J., Kapoor, D., & Prasad, R. (2022). Triacontanol as a versatile plant growth regulator in overcoming negative effects of salt stress. Journal of Agriculture and Food Research, 10: 100351.
Waqas, M., Shahzad, R., Khan, A.L., Asaf, S., Kim, Y.H., Kang, S.M., Bilal, S., Hamayun, M., & Lee, I.J. (2016). Salvaging effect of triacontanol on plant growth, thermotolerance, macro-nutrient content, amino acid concentration and modulation of defense hormonal levels under heat stress. Plant Physiology and Biochemistry, 99(1): 118-125.
Yadollahi, P., Asgharipour, M., Sheikhpour, S., Jabbari, B., & Ghasemi, H. (2015). Effects of different levels of sodium nitroprusside and arsenic on fruit yield and some biochemical characteristics of bitter melon (Momordica charantia L.). Journal of Plant Ecophysiology, 7(21): 221-234. [In Persian]
Zhao, J., Davis, L. C., & Verpoorte, R. (2005). Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnology Advances23(4): 283-333.