Document Type : Research Paper - Agronomy

Authors

1 M.Sc. Graduate of Agronomy, Department of Plant Production and Genetic, Faculty of Agricultural Science and Engineering, Razi University, Kermanshah, Iran

2 Associate Professor, Department of Plant Prodution and Genetic, Faculty of Agricultural Science and Enjineering, Razi University, Kermanshah, Iran

3 Associate Professor, Department of Plant Production and Genetic, Faculty of Agricultural Science and Engineering, Razi University, Kermanshah, Iran

Abstract

Introduction
Legumes are a vital source of plant-based food, second only to cereals. Among them, Chickpea (Cicer arietinum L.) holds significant importance, particularly in semi-arid regions such as western Iran, where it is primarily cultivated under rainfed conditions. Chickpea is a valuable dietary component, particularly for low-income populations, as it is rich in protein (18-22%), unsaturated fatty acids (e.g. linoleic acid and oleic acid), and a good source of vitamins, such as riboflavin, niacin, thiamin, and folate (vitamin B9), and beta-carotene (a precursor of vitamin A) and minerals including calcium, magnesium, phosphorus, and potassium. In terms of total grain production in rainfed environments, chickpea ranks as the third most cultivated crop in Iran. Kermanshah province, with approximately 141,000 hectares dedicated to chickpea farming, leads in cultivation area. Despite this, the average yield of rainfed chickpea fields in Iran (480 kg/ha) lags significantly behind the global average (1,057 kg/ha). This disparity is primarily attributed to limited soil moisture and a lack of bioavailable nutrients. This study investigates the potential of iron, zinc, and boron chelates applied in both bulk and nanoparticle forms – to enhance chickpea grain yield and address nutritional deficiencies under rainfed conditions.
 Materials and Methods
The experiment was conducted during the 2018-2019 growing season at the Agriculture and Natural Resources Campus of Razi University under rainfed conditions. A randomized complete block design with three replications was implemented. Fertilizer treatments were applied as foliar sprays in two growth stages: the beginning of vegetative growth and flowering. Treatments included bulk and nanoparticle chelates of iron, zinc, and boron at three concentrations (2, 4, and 8 g/l), their combinations and a control.
Results and Discussion
Soil analysis revealed deficiencies in bioavailable iron, zinc, and boron. The analysis of variance showed that both the type and concentration of fertilizers significantly affected grain yield and its components. All treatments, except boron fertilizer, caused a significant increase in grain yield compared to the control. The highest yield (814 kg/ha) was observed with the combined application of iron+zinc+boron at 8 g/l, resulting in 1,392 kg/ha grain yield and 3,287 kg/ha biomass.  Other notable results included combinations of iron + zinc + boron (1,196 kg/ha), iron + zinc (1,108 kg / ha), and bulk zinc alone (1,053 kg/ha). Increasing fertilizer concentration positively influenced plant height, the number of pods per plant, grains per pod, total grains per plant, and 100-grain weight. Among all treatments, the concentration of 8 g/l consistently yielded the most significant improvements. While nanoparticle fertilizers performed well, bulk forms of iron and zinc proved equally, if not more, effective in enhancing grain yield. However, bulk fertilizers were superior in increasing plant height.
 Conclusion
The study concludes that while both bulk and nanoparticle fertilizers of iron and zinc improve chickpea yield under rainfed conditions, nanoparticle fertilizers did not demonstrate a clear advantage over bulk forms. However, regarding plant height increase, bulk iron and zinc fertilizers were particularly effective. Considering reports of the higher efficiency of nanoparticles in irrigated environments, further research is necessary to determine conditions where nanoparticles may outperform bulk fertilizers in rainfed systems.
 

Keywords

Main Subjects

Abdel-Hakim, S.G., Shehata, A.S.A., Moghannem, S.A., Qadri, M., El-Ghany, M.F.A., Abdeldaym, E.A., & Darwish, O.S. (2023). Nanoparticulate fertilizers increase nutrient absorption efficiency and agro-physiological properties of lettuce plant. Agronomy, 13(3): 691. https://doi.org/10.3390/agronomy13030691
Ahmadi, L., Ghobadi, M., Saeidi, M., & Ghaderi, J. (2020). The effect of supplemental irrigation, time and methods of Fe fertilizer application on qualitative and quantitative traits of chickpea (Cicer arietinum L.), Iranian Journal Pulses Research, 10(2): 119-131. https://doi.org/10.22067/ijpr.v10i2.68262 [In Persian]
Alam, P., Kaur Kohli, S., Al Balawi, T., Altalayan, F.H., Alam, P., Ashraf, M., Bhardwaj, R., & Ahmad, P. (2020). Foliar application of 24-Epibrassinolide improves growth, ascorbate-glutathione cycle, and glyoxalase system in brown mustard (Brassica juncea (L.) Czern.) under cadmium toxicity. Plants, 9(11): 1487. https://doi.org/10.3390/plants9111487
Anonymous, (2024). https://amar.maj.ir/page-amar/FA/65/form/pId3352, 93 pages. [In Persian]
Avila-Quezada, G.D., Ingle, A.P., Golinska, P., & Rai, M. (2022). Strategic applications of nano-fertilizers for sustainable agriculture: benefits and bottlenecks. Nanotechnology Reviews, 11(1): 2123-2140. https://doi.org/10.1515/ntrev-2022-0126
Azhand, M., Saeidi, M., Beheshti Ale Agha, A., & Kahrizi, D. (2023). Interaction of iron and zinc fortification and late-season water deficit on yield and fatty acid composition of Dragon's Head (Lallemantia iberica L.). Plant Physiology and Biochemistry, 201: 107882.  https://doi.org/10.1016/j.plaphy.2023.107882
Bana, R.S., Jat, G.S., Grover, M., Bamboriya, S.D., Singh, D., Bansal, R., Choudhary, A.K., Kumar, V., Laing, A.M., Godara, S., & Bana, R.C. (2022). Foliar nutrient supplementation with micronutrient-embedded fertilizer increases biofortification, soil biological activity and productivity of eggplant. Scientific Reports, 12(1): 5146. https://doi.org/10.1038/s41598-022-09247-0
Beig, B., Niazi, M.B.K., Sher, F., Jahan, Z., Malik, U. S., Khan, M.D., Americo Pinheiro, J.H.P., & Vo, D.V.N. (2022). Nanotechnology-based controlled release of sustainable fertilizers. A review. Environmental Chemistry Letters, 20: 2709–2726. https://doi.org/10.1007/s10311-022-01409-w
Bhuriya, K.R., Shinde, R.D., Raval, C.H., & Chauhan, A.H. (2023). Effect of sulphur and iron on growth, yield and quality of chickpea. The Pharma Innovation Journal, 12(5): 2713-2715. https://doi.org/10.33545/2618060X.2021.v4.i2a.141
Boukid, F. (2021). Chickpea (Cicer arietinum L.) protein as a prospective plant-based ingredient: a review. International Journal of Food Science and Technology, 56(11): 5435-5444. https://doi.org/10.1111/ijfs.15046
Brdar-Jokanovic, M. (2020). Boron toxicity and deficiency in agricultural plants. International Journal of Molecular Science, 21(4): 1424-1430. https://doi.org/10.3390/ijms21041424
Dhaliwal, S. S., Sharma, V., Shukla, A. K., Verma, V., Behera, S. K., Singh, P., Alotaibi, S.S., Gaber, A. & Hossain, A. (2021). Comparative efficiency of mineral, chelated and nano forms of zinc and iron for improvement of zinc and iron in chickpea (Cicer arietinum L.) through biofortification. Agronomy, 11(12): 2436. https://doi.org/10.3390/agronomy11122436
Dhaliwal, S.S., Sharma, V., Shukla, A.K., Verma, V., Behera, S.K., Singh, P., Alotaibi, S.S., Gaber, A., & Hossain, A. (2021). Comparative efficiency of mineral, chelated and nano forms of Zinc and Iron for improvement of Zinc and Iron in Chickpea (Cicer arietinum L.) through biofortification. Agronomy, 11: 2436. https://doi.org/10.3390/agronomy11122436
Drostkar, E., Talebi, R., & Kanouni, H. (2016). Foliar application of Fe, Zn and NPK nano-fertilizers on seed yield and morphological traits in chickpea under rainfed condition. Research Letters in Ecology, 4(1): 221-228.
Elahi, S., Nabizadeh, E., Majidi, A., & Poryousef Miandoab, M. (2022). Effect of glycine betaine, boron and zinc on yield and nutrient uptake of chickpea under rainfed conditions. Iranian Dryland Agronomy Journal, 10(2): 165-182. https://doi.org/10.22092/IDAJ.2022.355434.346 [In Persian]
El-Saadony, M.T., ALmoshadak, A.S., Shafi, M.E., Albaqami, N.M., Saad, A.M., El-Tahan, A.M., Desoky, E.M., Elnahal, A.S.M., Almakas, A., Abd El-Mageed, T.A., Taha, A.E., Elrys, A.S., & Helmy, A.M. (2021). Vital roles of sustainable nano-fertilizers in improving plant quality and quantity-an updated review. Saudi Journal of Biological Science, 28(12): 7349-7359. https://doi.org/10.1016/j.sjbs.2021.08.032
F.A.O. (2023). Faostat-agriculture. Food and Agriculture Organization of the United Nations. Retrieved from http://www.fao.org/site/408.
F.A.O.STAT. (2021). Rome. Retrieved from https://www.fao.org/faostat/es/#data/QCL (accessed on 17 December 2021).
Fakharzadeh, S., Hafizi, M., Baghaei, M.A., Etesami, M., Khayamzadeh, M., Kalanaky, S., Akbari, M.E., & Nazaran, M.H. (2020). Using nano chelating technology for biofortification and yield increase in Rice. Scientific Reports, 10(1): 4351. https://doi.org/10.1038/s41598-020-60189x
Falaknaz, M., Farokhian, S., & Kahrizi, D. (2022). Effect of foliar application of micronutrients on quantitative and qualitative characteristics of soybean (Glycine max L.), Agrotechniques in Industrial Crops, 2(2): 79-86. https://doi.org/10.22126/atic.2022.7913.1059 [In Persian]
Hafeez, M.B., Ramzan, Y., Khan, S., Ibrar, D., Bashir, S., Zahra, N., Rashid, N., Nadeem, M., Rahman, S. U., Shair, H., Ahmad, J., Hussain, M., Irshad, S., Alfagham, A., & Diao, Z. (2021). Application of zinc and iron-based fertilizers improves the growth attributes, productivity, and grain quality of two wheat (Triticum aestivum) cultivars. Frontiers in Nutrition, 8: 779595. https://doi.org/10.3389/fnut.2021.779595
Hidoto, L., Worku, W., Mohammed, H., & Bunyamin, T. (2017). Effects of zinc application strategy on zinc content and productivity of chickpea grown under zinc deficient soils. Journal of soil science and plant nutrition, 17(1): 112-126. https://doi.org/10.4067/S0718-95162017005000009
Huang, W.T., Xie, Y.Z., Chen, X.F., Zhang, J., Chen, H.H., Ye, X., Guo, J., Yang, L.T., & Chen, L.S. (2021). Growth, mineral nutrients, photosynthesis and related physiological parameters of Citrus in response to nitrogen deficiency. Agronomy, 11: 1859. https://doi.org/10.3390/agronomy11091859
Joshi, P., Yasin, M., & Sundaram, P. (2018). Genetic variability, heritability and genetic advance study for seed yield and yield component traits in a chickpea recombinant inbred line (RIL) population. International Journal of Pure and Applied Bioscience, 6: 36–141. https://doi.org/10.18782/2320-7051.6231
Kamaraki, H., & Galavi, M. (2012). Evaluation of foliar Fe, Zn and B micronutrients application on quantitative and qualitative traits of safflower (Carthamus tinctorius L.). Journal of Agroecology, 4(3): 201-206. https://doi.org/10.22067/JAG.V4I3.15308 [In Persian]
Kaur Grewal, S., Sharma, K.P., Bharadwaj, R.D., Hegde, V., Tripathi, S., Singh, S., Kumar Jain, P., Kumar Agrawal, P., & Mondal, B. (2020). Understanding genotypic variation and identification of promising genotypes for iron and zinc content in chickpea (Cicer arietinum L.). Journal of Food Composition and Analysis, 88: 103458. https://doi.org/10.1016/j.jfca.2020.103458
Kerdtoob, S., Chanthasena, P., Limphirat, W., Penkhrue, W., Ganta, P., Srisakvarangkool, W., Yasawong, M., & Nantapong, N. (2024). Streptomyces monashensis MSK03-mediated synthesis of gold nanoparticles: characterization and antibacterial activity. RSC Advances, 14(7): 4778-4787. https://doi.org/10.1039/D3RA07555A
Malakouti, M.J. & Tehrani, M.H., (2005). Role of micronutrients on the yield and quality of agricultural crops and enhancing humn health: Micro-nutrients with macro-effects. Third edition (completely revised). Tarbiat Modares Univ. Pub. No.89. Pp. 398. Iran. [In Persian]
Math, G., Vijayakumar, A.G., & Balol, G. (2022). Application of zinc and iron for higher productivity and agronomic use efficiency of chickpea (Cicer arietinum) varieties. Indian Journal of Agronomy, 67(4): 425-430. https://doi.org/10.59797/ija.v67i4.149
Moradi, M., & Soltani Howyzeh, M. (2018). Evaluation of genetic diversity and heritability of the grain yield and yield components in spring rapeseed cultivars. Journal of Crop Breeding, 10(26): 207-214. https://doi.org/10.29252/jcb.10.26.207 [In Persian]
Naorem, A., Jayaraman, S., Dang, Y.P., Dalal, R.C., Sinha, N.K., Rao, C.S., & Patra, A.K. (2023). Soil constraints in an arid environment-challenges, prospects, and implications. Agronomy, 13: 220-231. https://doi.org/10.3390/agronomy13010220
Nongbet, A., Mishra, A.K., Mohanta, Y.K., Mahanta, S., Ray, M.K., Khan, M., Baek, K.H., & Chakrabartty, I. (2022). Nano fertilizers: a smart and sustainable attribute to modern agriculture. Plants (Basel), 11(19): 2587. https://doi.org/10.3390/plants11192587
Pal, V., Singh, G., & Dhaliwal, S. (2019). Yield enhancement and biofortification of chickpea Cicer arietinum L. grain with iron and zinc through foliar application of ferrous sulfate and urea. Journal of Plant Nutrition, 42: 1789–1802. https://doi.org/10.1080/01904167.2019.1648675
Pirzad, A.R., Tousi, P., & Darvishzadeh, R. (2013). Effect of Fe and Zn foliar application on plant characteristics and essential oil content of anise (Pimpinella anisum L.). Iranian Journal of Crop Sciences, 15(1): 12-23. https://doi.org/20.1001.1.15625540.1392.15.1.2.0 [In Persian]
Polar, E. (1975). Zinc in pollen and its incorporation into seeds. Planta, 123, 97–103. https://doi.org/10.1007/BF00388064
Rathod, S., Channakeshava, S., Basavaraja, B., & Shashidhara, K.S. (2020). Effect of soil and foliar application of zinc and Boron on growth, yield and micro nutrient uptake of Chickpea. Journal of Pharmacognosy and Phytochemistry, 9(4): 3356-3360. https://doi.org/10.9734/IJPSS/2023/v35i214066
Roy, P.D., Narwal, R.P., Malik, R.S., Saha, B.N., & Kumar, S. (2013). Impact of zinc application methods on greengram productivity and grain zinc fortification. Journal of Environmental Biology, 35: 851-854.
Sabaghnia, N., & Janmohammadi, M. (2023). Influence of some nano-fertilizers on chickpeas under three irrigation strategies. Plant Nano Biology, 4: 100037. https://doi.org/10.1016/j.plana.2023.100037
Saeed, A., Sabaghpour, S.H., Farayedi, Y., Kanouni, H., Sadeghzadeh Ahari, D., Kamel, M., Nematifard, M., Shahab, M.R., Mamudi, A.A., shobeiri, S. S., Mostafayi, H., Jahangiri, A., Mahmudi, F., Mahdiyeh, M., pezeshkpour, P., Seyedi, F., Karimizadeh, R., Armeiun, M., Abdolazimzadeh, R., Akbari Kukia, A., Azizi, A., & Seyed Mahmudian, E. (2017). Saeed, a new chickpea variety, suitable for autumn-entezari planting in template and cold regions at dryland conditions. Research Achievements for Field and Horticulture Crops, 6(2): 149-164. https://doi.org/10.22092/rafhc.2018.109977.1067 [In Persian]
Sathiyamurthy, V.A., Shanmugasundaram, T., Rajasree, V., & Arumugam, T. (2017). Effect of foliar application of micronutrients on growth, yield and economics of tomato (Lycopersicon esculentum Mill.). Madras Agricultural Journal, 104(4-6):188-193. https://doi.org/10.29321/MAJ.04.000430
Schmidt, W., Thomine, S., & Buckhout, T.J. (2020). Iron nutrition and interactions in plants. Frontier in Plant Science, 10: 1670. https://doi.org/10.3389/fpls.2019.01670
Shireen, F., Nawaz, M.A., Chen, C., Zhang, Q., Zheng, Z., Sohail, H., Sun, J., Cao, H., Huang, Y., & Bie, Z. (2018). Boron: functions and approaches to enhance Its availability in plants for sustainable agriculture. International Journal of Molecular Science, 19(7): 1856-1865. https://doi.org/10.3390/ijms19071856
Soheili Movahhed, S., Khomari, S., Sheikhzadeh, P., & Alizadeh, B. (2019). Effects of drought stress and foliar Application of boron and zinc on yield and some agronomic and morphological traits of spring type safflower (Carthamus tinctorius L.). Journal Of Agroecology, 11(4): 1275-1291. https://doi.org/10.22067/JAG.V11I4.72028 [In Persian]
Thudi, M., Chitikineni, A., Liu, X., He, W., Roorkiwal, M., Yang, W., Jian, J., Doddamani, D., Gaur, P., Rathore, A., Samineni, S., Saxena, R.K.,  Xu, D., Singh, N.P., Chaturvedi, S.K., Zhang, G., Wang, J.,  Datta, S. K., Xu, X., & Varshney, R.K. (2016). Recent breeding programs enhanced genetic diversity in both desi and kabuli varieties of chickpea (Cicer arietinum L.). Science Report, 6: 38636-38642. https://doi.org/10.1038/srep38636
Ullah, A., Farooq, M., Rehman, A., Hussain, M., & Siddique Kadambot, H.M. (2020). Zinc nutrition in chickpea (Cicer arietinum): a review. Crop and Pasture Science, 71: 199-218. https://doi.org/10.1071/CP19357
Wang, R., Mi, K., Yuan, X., Chen, J., Pu, J., Shi, X., Yang, Y., Zhang, H., & Zhang, H. (2023). Zinc oxide nanoparticles foliar application effectively enhanced zinc and aroma content in rice (Oryza sativa L.) grains. Rice, 16(1): 36. https://doi.org/10.1186/s12284-023-00653-0
Waraich, E.A., Ahmad, R., Halim, A., & Aziz, T. (2012). Alleviation of temperature stress by nutrient management in crop plants: a review. Journal of Soil Sciences and Plant Nutrition, 12: 221–244. https://doi.org/10.4067/S0718-95162012000200003
Weber, E., & Bleiholder, H. (1990). Erläuterungen zu den BBCH-dezimal-codes für die Entwicklungsstadien von Mais, Raps, Faba-bohne, Sonnenblume und Erbse-mit Abbildungen. Gesunde Pflanzen, 42(9): 308-321.