نوع مقاله : علمی پژوهشی - فیزیولوژی پس از برداشت

نویسندگان

1 دانشجوی دکتری علوم باغبانی، دانشکدۀ کشاورزی، دانشگاه لرستان، خرم آباد، ایران

2 دانشیار گروه علوم باغبانی، دانشکدۀ کشاورزی، دانشگاه لرستان، خرم آباد، ایران

3 استادیار گروه علوم باغبانی، دانشکدۀ کشاورزی، دانشگاه لرستان، خرم آباد، ایران

چکیده

سبک زندگی سالم، امروزه در سطح جهانی با تقاضای بالایی مواجه شده و این تقاضا نیاز به حفظ یا ذخیره بهتر مواد خوراکی تازه مثل میوه­ ها را بخاطر داشتن مقادیر فراوان ویتامین و مواد معدنی افزایش داده است. از طرفی، افزایش ضایعات پس از برداشت موجب شده توسعۀ کاربرد ترکیبات طبیعی و سازگار با طبیعت و انسان، در جهت تولید محصولات عاری از مواد مضر و دارای ارزش غذایی بالا، همراه با کاهش ضایعات، امری ضروری به نظر برسد. به همین منظور، آزمایش حاضر به صورت فاکتوریل در قالب طرح کاملاً تصادفی در چهار تکرار انجام شد. فاکتور اول تیمارهای محلول‌پاشی قبل و پس از برداشت شامل شاهد، محلول‌پاشی کیتوزان (50 میلی­گرم بر لیتر) و نانوکیتوزان (50 و 100 میلی­گرم بر لیتر) و غوطه­ وری میوه­ های برداشت شده با محلول کلریدکلسیم در مرحلۀ پس از برداشت (صفر و 2 درصد) و فاکتور دوم شامل مدت زمان انبارمانی (روزهای صفر، 60، 90 و 120) بر میوه ­های سیب رقم گلدن پیوند شده روی پایه MM 111 بود. محلول‌پاشی قبل از برداشت در یک باغ سیب 18 ساله در سال 1400، واقع در منطقه آبستان شهرستان خرم آباد و  مرحلۀ غوطه­ وری در آزمایشگاه پس از برداشت صورت گرفت. میوه­ ها پس از شستشوی اولیه، ابتدا با آب مقطر شستشو، خشک و سپس در محلول­ کلرید کلسیم در دمای اتاق به مدت 8 دقیقه غوطه­ ور شدند. سپس در مجاورت جریان هوای خنک به منظور حصول اطمینان از حذف رطوبت سطحی اضافی، در جعبه های پلاستیکی میوه و یخچال دمای 4 درجه و رطوبت نسبی 80 تا 90 درصد تا زمان اندازه ­گیری پارامترها نگهداری شد. در این بررسی، ویژگی­ های بیوشیمیایی ازجمله کاهش وزن، اسیدیته، اسیدهای قابل تیتراسیون، مواد جامد محلول کل، شاخص رسیدگی، ویتامین ث و محتوای مالون دی آلدئید بررسی گردید. نتایج تحقیق نشان داد که تیمارهای مورد استفاده، ویژگی­ های بررسی شده در میوه سیب را تحت تأثیر قرار دادند و کاهش وزن کم­تری نسبت به تیمار شاهد داشتند. بررسی ویژگی­ های بیوشیمیایی نیز بیانگر تأثیر مثبت تمام تیمارها بر پارامترهای مورد نظر بود، به طوری که بیش­ترین اسیدهای قابل تیتراسیون (0/31 درصد)، ویتامین ث (45 میلی‌گرم آسکوربیک اسید بر 100 میلی‌لیتر عصارۀ میوه) و کم­ترین میزان اسیدیته (3/54) و محتوای مالون دی آلدئید (0/27 میلی­گرم بر گرم وزن تازه) در تیمارهای ترکیبی نانوکیتوزان و کلرید کلسیم به دست آمد. همچنین تیمارهای مورد استفاده موجب کاهش مواد جامد محلول کل و شاخص رسیدگی میوه­ ها شدند. براساس نتایج کلی، می­توان بیان نمود که کاربرد تیمارهای نانوذرات کیتوزان 100 میلی­گرم بر لیتر در مرحلۀ قبل از برداشت به همراه غوطه­ وری میوه­ ها در مرحلۀ پس از برداشت در محلول کلرید کلسیم 2 درصد، در اکثر ویژگی­ ها نتایج مطلوب­ تری نسبت به سایر سطوح تیماری نشان داد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Investigating the effect of natural compounds before and post-harvest on the physicochemical characteristics of apple (Malus domestica cv. Golden Delicious) fruit

نویسندگان [English]

  • Fatemeh Eini Tari 1
  • Abdollah Ehtesham Nia 2
  • Hasan Mumivand 2
  • Mohamad Reza Raji 3

1 PhD student of Horticultural Sciences, Department of Horticultural Sciences, Faculty of Agriculture, Lorestan University, Khorramabad, Iran

2 Associate Professor, Department of Horticultural Sciences, Faculty of Agriculture, Lorestan University, Khorramabad, Iran

3 Assistant Professor, Department of Horticultural Sciences, Faculty of Agriculture, Lorestan University, Khorramabad, Iran

چکیده [English]

Introduction
The global demand for a healthy lifestyle has increased significantly in recent years. This growing awareness has highlighted the need for better preservation and storage of fresh produce, particularly fruits, due to their rich vitamin and mineral content. Additionally, the increase in post-harvest waste has underscored the importance of using natural, eco-friendly compounds to extend shelf life, minimize waste, and maintain high nutritional value without introducing harmful substances.
 Materials and Methods
This study was conducted as a factorial experiment using a completely randomized design with four replications. The first factor included pre- and post-harvest foliar treatments, with control treatments (spraying with distilled water), chitosan (50 mg l-1), Nano-chitosan (50 and 100 mg l-1) and the post-harvest immersion (Calcium chloride solution (0 and 2 %)). The second factor was storage duration (0, 60, 90 and 120 days). The study was carried out on Golden Delicious apples grafted onto MM 111 (Malling Merton 111) rootstock. Pre-harvest foliar spraying was carried out in an 18-year-old apple orchard in Abestan region of Khorramabad, while post-harvest immersion treatments were carried out at Lorestan University. After harvesting, the apples were initially washed with distilled water, dried, and immersed in a calcium chloride solution at room temperature for 8 minutes. To remove excess surface moisture, the treated fruits were placed in plastic fruit boxes and stored in a refrigerator at 4 °C with 80-90% relative humidity until the evaluation period. The study examined physiological and biochemical characteristics such as weight loss, acidity, titratable acids, soluble solids, ripening index, vitamin C content, and malondialdehyde levels.
 Results and Discussion
The results of this study indicated that the applied treatments significantly affected the physicochemical characteristics of Golden Delicious apples. Treated fruits exhibited lower weight loss compared to the control group. Biochemical analyses further confirmed the beneficial effects of all treatments on the evaluated parameters. The highest level of titratable acids, vitamin C, along with the lowest acidity and malondialdehyde content, were observed in apples subjected to the combined treatment of nano chitosan and calcium chloride. Additionally, the treatments led to a reduction in soluble solids content and the fruit ripening index. Coatings such as chitosan function as barriers with selective permeability to oxygen and carbon dioxide, modifying the surrounding atmosphere by increasing carbon dioxide levels and reducing oxygen concentration. This altered gaseous composition helps slow the respiration rate and ethylene production, thereby delaying the aging process and extending the fruit’s shelf life. Calcium also helps strengthen and maintain the integrity of the cell wall, ultimately preventing membrane deterioration and the increase in malondialdehyde in the fruit. Also, using calcium chloride plays a key role in strengthening cell walls, preserving the structure and function of membranes, and increasing the ability of cells to retain water.
 Conclusion
Overall, the findings suggest that pre-harvest application of 100 mg/L chitosan nanoparticle, combined with post-harvest immersion in a 2% calcium chloride solution, yielded the most favorable results across most measured parameters. This combined treatment effectively preserved fruit quality and extended storage life, making it a promising approach for reducing post-harvest losses in Golden Delicious apples.
 

کلیدواژه‌ها [English]

  • Acidity
  • Malondialdehyde
  • Nanoparticles
  • Weight loss
Abd-Elkader, D.Y., Salem, M.Z.M., Komeil, D.A., Al-Huqail, A.A., Ali, H.M., Salah, A.H., Akrami, M., & Hassan, H.S. (2021). Post-harvest enhancing and Botrytis cinerea control of strawberry fruits using low-cost and eco-friendly natural oils. Agronomy, 11: 1246.
Ackah, S., Bi, Y., Xue, S., Yakubu, S., Han, Y., Zong, Y., Atuna, R.A., & Prusky, D. (2022). Post-harvest chitosan treatment suppresses oxidative stress by regulating reactive oxygen species metabolism in wounded apples. Frontiers in Plant Science, 13: 959762.
Adiletta, G., Di Matteo, M., & Petriccione, M. (2021). Multifunctional role of chitosan edible coatings on antioxidant systems in fruit crops: a review. International Journal of Molecular Science, 22: 1–18.
Agricultural statistics. (2021). Report of horticultural and greenhouse products. Publications of the Deputy Statistics of Information and Communication Technology Center, November 2021, 3: 328 p. [In Persian]
Agriopoulou, S., Stamatelopoulou, E., Sachadyn-Król, M., & Varzakas, T. (2020). Lactic acid bacteria as antibacterial agents to extend the shelf life of fresh and minimally processed fruits and vegetables: quality and safety aspects. Microorganisms, 8: 952.
Ali, A., Tengku, M., Muda, M., Sijam, K., & Siddiqu, Y. (2011). Effect of chitosan coatings on the physicochemical characteristics of Eksotika II papaya (Carica papaya L.) fruit during cold storage. Food Chemistry, 124: 620-626.
Ali, S., Khan, A.S., Nawaz, A., Anjum, M.A., Naz, S., Ejaz, S., & Hussain, S. (2019). Aloe vera gel coating delays postharvest browning and maintains the quality of harvested litchi fruit. Postharvest Biology and Technology, 157: 110960.
Asghari, M.R., Azar Sharif, Z., Tajik, H., & Farrokhzad Nansa, A.R. (2019). The effect of coating Barijeh gum, cumin essential oil, and calcium chloride on the quality and biochemical characteristics of Mashhad black cherry. Journal of Horticultural Sciences (Agricultural Sciences and Industries), 32 (4): 680-650. [In Persian]
Ashraf, M., Shaheen, Sh., Naseer, S., & Akram, N.A. (2013). Salt stress affects water relations, photosynthesis, and oxidative defense mechanisms in (Solanum melongena L.). Journal of Plant Interactions, 8(1): 85-96.
Beiparysa, A, Topno, S.E., Joseph, A.V., Bahadur, V., Kerketta, A., & Kesharwani, L. (2023). Effect of calcium chloride (CaCl2) and carbon dioxide (CO2) on post-harvest quality of apple fruit (Malus domestica) cv. Gala. International Journal of Plant & Soil Science, 35(18): 199-207.
Bonomelli, C., Mogollón, R., Tonetto de Freitas, S., Zoffoli, J.P., & Contreras, C. (2020). Nutritional relationships in bitter pit affected fruit and the feasibility of Vis-NIR models to determine calcium concentration in ‘Fuji’ Apples. Agronomy, 10:1476.
Cheung, R., Ng, T., Wong, J., & Chan, W. (2015). Chitosan an update on potential biomedical and pharmaceutical applications. Marine Drugs, 13(8): 51-56.
De Corato, U. (2020). Improving the shelf-life and quality of fresh and minimally-processed fruits and vegetables for the modern food industry: A comprehensive critical review from the traditional technologies into the most promising advancements. Critical Reviews in Food Science and Nutrition, 60: 940–975.
De Matos Fonseca, J., dos Santos Alves, M.J., Soares, L.S., Moreira, R.D.F.P.M., Valencia, G.A., & Monteiro, A.R. (2021). A review on TiO2- based photocatalytic systems applied in fruit postharvest: Set-ups and perspectives. Food Research International, 144: 110378.
Dong, F., & Wang, X. (2018). Guar gum and ginseng extract coatings maintain the quality of sweet cherry. LWT - Food Science and Technology, 89: 117-122.
Dong, H., Cheng, L., Tan, J., Zheng K., & Jiang, Y. (2004). Effects of chitosan coating on quality and shelf life of peeled litchi fruit. Journal of Food Engineering, 64: 355-358.
Duan, C., Meng, X., Meng, J., Khan, M. I. H., Dai, L., & Khan, A. (2019). Chitosan as a preservative for fruits and vegetables: A review on chemistry and antimicrobial properties. Journal of Bioresearch Bioproduction, 4: 11–21.
Ehtesham Nia, A., Taghipour, S., & Siahmansour, S. (2022). Putrescine with Aloe vera gel coating improves bioactive compounds and the quality of table grapes under cold storage. Journal of Food Science and Technology, 59(10): 4085-4096.
Ehtesham Nia, A., Taghipour, S., & Siahmansour, S. (2021). Pre-harvest application of chitosan and postharvest Aloe vera gel coating enhances the quality of table grapes (Vitis vinifera L. cv. ‘Yaghouti’) during the postharvest period. Food Chemistry, 347: 129012.
Fooladi vanda, G., Shabani, L., & Razavizadeh, R. (2019). Chitosan enhances rosmarinic acid production in shoot cultures of Melissa officinalis L. through the induction of methyl jasmonate. Botnical Studies, 60: 26–36.
Ferydouni, L., Ehtesham Nia, A., Moumivand, H., & Raji, M.R. (2024). Investigating the effects of post-harvest application of nanocellulose/carvacrol composite coating on the physical-biochemical characteristics of physalis fruit. Journal of Plant Productions, 46(4): 569-582
Gao, Q., Tan, Q., Song, Z., Chen, W., Li, X., & Zhu, X. (2020). Calcium chloride postharvest treatment delays the ripening and softening of papaya fruit. Journal of Food Processing and Preservation, 44: e14604.
Ghasemi Arshad, Z., Ehtesham Nia, A., Hazbavi, A., Mumivand, H., & Soleimani Aghdam, M. (2023). Pre-harvest application of chitosan with carvacrol on biochemical, quality, and shelf-life characteristics of strawberries. Journal of Iranian Food Science and Industry Research, 19 (5): 633-617.
Ghesmati, M., Moradinezhad, F., & Khayat, M. (2018). Efficacy of some calcium salts foliar spray on growth and biochemical parameters of jujube fruit (Ziziphus Jujuba Mill.). Journal of Plant Productions (Scientific Journal of Agriculture), 41(3): 25-35.
Gheysarbigi, S., Mirdehghan, S.H., Ghasemnezhad, M., & Nazoori, F. (2020). The inhibitory effect of nitric oxide on enzymatic browning reactions of in-package fresh pistachios (Pistacia vera L.). Postharvest Biology and Technology, 159: 110998.
Ghoora, M.D., & Srividya, N. (2020). Effect of packaging and coating technique on postharvest quality and shelf life of Raphanus sativus L. and Hibiscus sabdariffa L. Microgreens Foods, 9: 653.
Gol, B.N., Patel, R., Rao, P., & Ramana, T.V. (2013). Improvement of quality and shelf life of strawberries with edible coatings enriched with chitosan. Postharvest Biology and Technology, 85: 185-195.
Gong, D., Bi, Y., Jiang, H., Xue, S., Wang, Z., & Li, Y. (2019). A comparison of post-harvest physiology, quality, and volatile compounds of ‘fuji’ and ‘delicious’ apples inoculated with Penicillium expansum. Postharvest Biology and Technology, 150: 95–104.
Harish Prashanth, K.V., Dharmesh, S.M., Jagannatha Rao, K.S., & Tharanathan, R.N. (2007). Free radical-induced chitosan depolymerized products protect calf thymus DNA from oxidative damage. Carbohydrate Research, 342: 190-195.
He, Y., Bose, S.K., Wang, W., Jia, X., Lu, H., & Yin, H. (2018). Pre-harvest treatment of chitosan oligosaccharides improved strawberry fruit quality. International Journal of Molecular Science, 19(8): 2194.
Heidar nejad, R., Ghahramani, Z., Barzegar, T., & Rabiee, V. (2020). The effect of harvest stage and storage duration on fruit quality of physalis (Physalis angulate L.). Journal of Agricultural Crops Production, 5 (1): 186-173. [In Persian]
Hocking, B., Tyerman, S.D., Burton, R.A., & Gilliham, M. (2016). Fruit calcium: Transport and physiology. Front. Plant Science, 7: 569.
Hosseini, M.S., Zahedi, S.M., Karimi, M., & Ebrahimzadeh, A. (2018). Postharvest application of spermidine polyamine on the storage quality and vase life of mango (Mangifera indica L.) in dipped conditions. Horticultural Science, 31(4): 765-777. [In Persian]
Hosseini, S.F., Amraie, M., Salehi, M., Mohseni, M., & Aloui, H. (2019). Effect of chitosan-based coatings enriched with savory and/or tarragon essential oils on postharvest maintenance of kumquat (Fortunella sp.) fruit. Food Science and Technology International, 7: 155–162.
Khaliq, G., Abbas, H.T., Ali, I., & Waseem, M. (2019). Aloe vera gel enriched with garlic essential oil effectively controls anthracnose disease and maintains the postharvest quality of banana fruit during storage. Horticulture, Environment, and Biotechnology, 60: 659-669.
Khaliq, G., Mohamed, M.T.M., Ali, A., Ding, P., & Ghazali, H.M. (2015). Effect of gum Arabic coating combined with calcium chloride on physicochemical and qualitative properties of mango (Mangifera indica L.) fruit during low-temperature storage. Scientia Horticulturae, 190: 187–194.
Kou, X., Wu, M., Li, L., Wang, S., Xue, Z., Liu, B., & Fei, Y. (2015). Effects of CaCl2 dipping and pullulan coating on the development of brown spots on ‘Huangguan’ pears during cold storage. Postharvest Biology and Technology, 99: 63-72.
Kumar, P., Sethi, S., Sharma, V.V., Srivastav, M., & Varghese, E. (2017). Effect of chitosan coating on postharvest life and quality of plum during storage at low temperature. Scientia Horticulturae, 226: 104-109.
Li, S., Jiang, H., Wang, Y., Lyu, L., Prusky, D., & Ji, Y. (2020). Effect of benzothiadiazole treatment on improving the mitochondrial energy metabolism involved in induced resistance of apple fruit during postharvest storage. Food Chemistry, 302: 125288.
Li, Y., Rokayya, S., Jia, F., Nie, X., Xu, J., & Elhakem, A. Almatrafi, M., Benajiba, N., & Helal, M. 2021. Shelf‑life, quality, and safety evaluations of blueberry fruits coated with chitosan nanomaterial films. Scientific Reports, 11: 55.
Lin, Y.F., Lin, H.T., Zhang, S., Chen, Y.H., Chen, M.Y., & Lin, Y.X. (2014). The role of active oxygen metabolism in hydrogen peroxide-induced pericarp browning of harvested longan fruit. Postharvest Biology and Technology, 96: 42-48.
Luo, Y., & Wang, Q. (2013). Recent advances of chitosan and its derivatives for novel applications in food science. Journal of Food Processing & Beverages, 1(1): 13.
Lustriane, C., Dwivany, F.M., Suendo, V., & Reza, M. (2018). Effect of chitosan and chitosan-nanoparticles on post-harvest quality of banana fruits. Journal of Plant Biotechnology, 45: 36–44 DOI: https://doi.org/10.5010/JPB.2018.45.1.036.
Mahfoudhi, N., & Hamdi, S. (2015). Use of almond and gum Arabic as novel edible coating to delay postharvest ripening and to maintain sweet cherry (Prunus avium) quality during storage. Food Processing and Preservation, 39(6): 1499-1508.
Nguyen, D.H., & Nguyen, V.H. (2020). Effect of nano-chitosan coating on the quality, polyphenol oxidase activity, and MDA content of strawberry. Journal of Horticulture and Postharvest Research, 3 (1): 11-24.
Nuri Ocalan, O., Çezik, F., Al-Salihi, A.A.M., Çigdem, M.R., & Yıldız, K. (2022). The Effect of post-harvest calcium chloride applications on the shelf-life quality of strawberry. Turkish Journal of Agriculture - Food Science and Technology, 10(1): 2701-2707
Parvin, N., Kader, M.A., Huque, R., Molla, M.E., & Khan, M.A. (2018). Extension of shelf-life of tomato using irradiated chitosan and its physical and biochemical characteristics. International Letters of Natural Sciences, 67: 16-23.
Parvin, N., Rahman, A., Roy, J., Rashid, M.H., Paul, N.C., Mahamud, M.A., Imran, S., Sakil, M.A., Uddin, F.M.J., & Molla, M.E. (2023). Chitosan coating improves postharvest shelf-life of mango (Mangifera indica L.). Horticulturae, 9(1): 64.
Pashazadeh, B., El-Hami Rad, A.H., Haj Najari, H., & Shrayei, P. (2022). Investigation of the effect of chitosan coating and cinnamon extract on qualitative, physicochemical, and microbial characteristics of apple fruit during cold storage. Food Processing and Storage, 13 (4): 42-23. [In Persian]
Perkins-Veazie, P., Collins, J.K., & Howard, L. (2008). Blueberry fruit response to postharvest application of ultraviolet radiation. Postharvest Biology and Technology, 47(3): 280-285.
Pessoa, C.C., Marques, A.C., Coelho, A.R.F., Daccak, D., Luís, I.C., Ramalho, J.C., Campos, P.S., Pais, I.P., Semedo, J.N., & Silva, M.M. (2022). Assessment of calcium content in pear fruits under storage after CaCl2 applications during pre- and post-harvest phases. Biology and Life Sciences Forum, 16: 9.
Rahimi, M., Nazarian, M.H., Abolghasemi, S., Sadaqat, S., & Zare, M. (2023). The effect of post-harvest application of hot water, calcium chloride, and calcium nanochelate fertilizer on reducing cold damage and increasing the storage life of 'Mahli Darab' orange fruit. Journal of Horticultural Sciences, 37 (3): 819-801. [In Persian]
Razzaq, K., Khan, A.S., Malik, A.U., Shahid, M. & Ullah, S. (2014). Role of putrescine in regulating fruit softening and antioxidative enzyme systems in Samar Bahisht Chaunsa” mango. Postharvest Biology and Technology, 96: 23-32.
Ricoa, D., Martin-Dianaa, A.B., Baratb, J.M., & Barry-Ryan, C. (2007). Extending and measuring the quality of fresh-cut fruit and vegetables: A review. Trends in Food Science and Technology, 18: 373-386.
Rokayya, S., Jia, F., Li, Y., Nie, X., Xu, J., Han, R., Yu, H., Amanullah, S., Almatrafi, M.M., & Helal, M. (2021). Application of nano-titanium dioxide coating on fresh Highbush blueberries shelf life stored under ambient temperature. LWT, 137: 110422.
Sabir, F., Sabir, A., Ozcelik, S., & Kucukbasmaci, A. (2019). Maintenance of postharvest quality of blackberry (Rubus fructicosus L.) fruits through salicylic acid and CaCl2 immersions. Acta Scientiarum Polonorum Hortorum Cultus, 18(4): 121–128.
Saki, M., ValizadehKaji, B., Abbasifar, A., & Shahrjerdi, I. (2019). Effect of chitosan coating combined with thymol essential oil on physicochemical and qualitative properties of fresh fig (Ficus carica L.) fruit during cold storage. Journal of Food Measurement and Characterization,13: 1147-1158. .
Salvia-Trujillo, L., Rojas-Graü, M. A., Soliva-Fortuny, R., & Martín-Belloso, O. (2015). Use of antimicrobial nanoemulsions as edible coatings: Impact on safety and quality attributes of fresh-cut Fuji apples. Postharvest Biology and Technology, 105: 8-16.‏
Shah, S., & Hashmi, M.S. (2020). Chitosan–Aloe vera gel coating delays postharvest decay of mango fruit. Horticultural Environment Biotechnology, 61: 279–289.
Shiri, M.A., Ghasemnezhad, M., Bakhshi, D., & Saadatian, M. (2011). Effect of ascorbic acid on phenolic compounds and antioxidant activity of packaged fresh-cut table grape. Electronic Journal of Environmental, Agricultural and Food Chemistry, 10: 2506-2515.
Shiri, M.A., Ghasemnezhad, M., Fattahi Moghaddam, J., & Ebrahimi, R. (2016). Effect of CaCl2 sprays at different fruit development stages on postharvest keeping quality of ‘Hayward’ kiwifruit. Journal of Food Processing and Preservation, 40(4): 624-635.
Shirzad, H. (2013). Effect of chitosan and calcium chloride to reduce postharvest rot and different quality attributes on Siah mashhad sweet cherry. Journal of Horticultural Science, 26(4): 378-384.
Silva, G.M.C., Silva, W.B., Medeiros, D.B., Salvador, A.R., Cordeiro, M.H.M., da Silva, N.M., Santana, D.B., & Mizobutsi, G.P. (2017). The chitosan affects severely the carbon metabolism in mango (Mangifera indica L. cv. Palmer) fruit during storage. Food Chemistry, 237: 372–378.
Sohail, M., Ayub, M., Khalil, S.A., Zeb, A., Ullah, F., & Afridi, S.R. (2015). Effect of calcium chloride treatment on post-harvest quality of peach fruit during cold storage. International Food Research Journal, 22(6): 2225- 2229.
Thor, K. (2019). Calcium nutrient and messenger. Frontiers in Plant Science, 10: 449564.‏
Tsaniklidis, G., Delis, C., Nikoloudakis, N., Katinakis, P., & Aivalakis. G. (2014). Low-temperature storage affects the ascorbic acid metabolism of cherry tomato fruits. Plant Physiology and Biochemistry, 84: 149-157.
Wang, X., Zhang, X., Sun, M., Wang, L., Zou, Y., Fu, L., Han, C., Li, A., Li, L., & Zhu, C. (2022). Impact of vanillin on postharvest disease control of apple. Frontiers in Microbiology, 13: 979737.
Wang, Y., Yan, Z., Tang, W., Zhang, Q., Lu, B., Li, Q., & Zhang, G. (2021). Impact of chitosan, sucrose, glucose, and fructose on the postharvest decay, quality, enzyme activity, and defense-related gene expression of strawberries. Horticulturae, 7: 518.
Xing, Y., Li, X., Xu, Q., Yun, J., & Tang, Y. (2011). Effects of chitosan coating enriched with cinnamon oil on qualitative properties of sweet pepper (Capsicum annuum L.). Journal of Food Chemistry, 124: 1443-1450
Zhao, J., Pan, L., Zhou, M., Yang, Z., Meng, Y., & Zhang, X. (2019). Comparative physiological and transcriptomic analyses reveal mechanisms of improved osmotic stress tolerance in annual ryegrass by exogenous chitosan. Genes, 10: 853.
Zheng, X., & Tian, S. (2006). Effect of oxalic acid on control of postharvest browning of litchi fruit. Food Chemistry, 96(4): 519-523.