Abdelaziz, A.M., Salem, S.S., Khalil, A.M., El-Wakil, D.A., Fouda, H.M. & Hashem, A.H. (2022). Potential of biosynthesized zinc oxide nanoparticles to control Fusarium wilt disease in eggplant (Solanum melongena) and promote plant growth. BioMetals, 35(3), 601-616.
Abedi, S., Iranbakhsh, A., Oraghi Ardebili, Z. & Ebadi, M. (2020). Nitric oxide and selenium nanoparticles confer changes in growth, metabolism, antioxidant machinery, gene expression, and flowering in chicory (Cichorium intybus L.): potential benefits and risk assessment. Environmental Science and Pollution Research, 28, 3136-3148.
Adil, M., Bashir, S., Bashir, S., Aslam, Z., Ahmad, N., Younas, T., Asghar, R.M.A., Alkahtani, J., Dwiningsih, Y. & Elshikh, M.S. (2022). Zinc oxide nanoparticles improved chlorophyll contents, physical parameters, and wheat yield under salt stress. Frontiers in plant science, 13, p. 932861.
Adrees, M., Khan, Z.S., Hafeez, M., Rizwan, M., Hussain, K., Asrar, M., Alyemeni, M.N., Wijaya, L. & Ali, S. (2021). Foliar exposure of zinc oxide nanoparticles improved the growth of wheat (Triticum aestivum L.) and decreased cadmium concentration in grains under simultaneous Cd and water deficient stress. Ecotoxicology and Environmental Safety, 208, p.111627.
Ahanger, M.A, Aziz, U, Alsahli, A.A, Alyemeni, M.N. & Ahmad, P. (2020). Influence of exogenous salicylic acid and nitric oxide on growth, photosynthesis, and ascorbate-glutathione cycle in salt stressed Vigna angularis. Biomolecules, 10(1), 42.
Ahmed, R., Uddin, M.K., Quddus, M.A., Samad, M.Y.A., Hossain, M.M. & Haque, A.N.A. )2023(. Impact of foliar application of zinc and zinc oxide nanoparticles on growth, yield, nutrient uptake and quality of tomato. Horticulturae, 9(2), 162.
Alhverdizadeh, S. & Danaee, E. (2022). Effect of Humic Acid and Vermicompost on Some Vegetative Indices and Proline Content of
Catharanthus roseous under Low Water Stress.
Environment and Water Engineering, 9(1), 141-152.
doi.org/10.22034/ewe.2022.333951.1745.
Ali, B., Saleem, M.H., Ali, S., Shahid, M., Sagir, M., Tahir, M.B., Qureshi, K.A., Jaremko, M., Selim, S., Hussain, A. & Rizwan, M. (2022). Mitigation of salinity stress in barley genotypes with variable salt tolerance by application of zinc oxide nanoparticles. Frontiers in Plant Science, 13, 973782.
Azam, M., Bhatti, H.N., Khan, A., Zafar, L. & Iqbal, M. (2022). Zinc oxide nano-fertilizer application (foliar and soil) effect on the growth, photosynthetic pigments and antioxidant system of maize cultivar. Biocatalysis and Agricultural Biotechnology, 42, 102343.
Babajani, A., Iranbakhsh, A.R., Ardebili Z.O. & Eslami, B. (2019). Differential growth, nutrition, physiology and gene expression in Melissa officinalis mediated by zinc oxide and elemental selenium nanoparticles. Environmental Science and Pollution Research, 26, 24430–24444. https//doi.org/10.1007/s1135 6-019-05676 –z.
Balotf, S., Islam, S., Kavoosi, G., Kholdebarin, B., Juhasz, A. & Ma, W. (2018). How exogenous nitric oxide regulates nitrogen assimilation in wheat seedlings under different nitrogen sources and levels. PloS one, 13(1): p.e0190269.
Bates, L. S., Waldren, R. P. & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Journal of Plant Soil, 39, 205–207. DOI: 10.1007/BF00018060.
Beaudoin-Eagan, L.D. & Thorpe, T.A. (1985). Tyrosine and phenylalanine ammonia lyase activities during shoot initiation in tobacco callus cultures. Plant Physiology, 78(3), 438-441.
Danaee, E. & Abdossi, V. (2019). Effects of Some Amino Acids and Organic Acids on Enzymatic Activity and Longevity of Dianthus caryophyllus cv. Tessino on at Pre-Harvest Stage. Journal of Ornamental Plants, 9(2), 93-104.
Danaee, E. & Abdossi, V. (2018). Effect of different concentration and application methods of polyamines (Putrescine, Spermine, Spermidin) on some morphological, physiological and enzymatic characteristics and vase life of Rosa hybrida cv. Dolce Vita cut flower. Journal of Ornamental Plants, 8(3), 171-182.
Dimkpa, CO., Singh, U., Bindraban, P.S, Elmer, W.H, Gardea-Torresdey, J.L. & White, J.C. (2019). Zinc oxide nanoparticles alleviate drought-induced alterations in sorghum performance, nutrient acquisition and grain fortification. Science of the Total Environment, 688, 926-934.
Faizan, M., Faraz, A., Yusuf, M., Khan, S.T. & Hayat, S. (2018). Zinc oxide nanoparticle-mediated changes in photosynthetic efficiency and antioxidant system of tomato plants. Photosynthetica, 56, 678-86.
González-Gordo, S., Bautista, R., Claros, M.G., Cañas, A., Palma, J.M. & Corpas, F.J. (2019). Nitric oxide-dependent regulation of sweet pepper fruit ripening. Journal of Experimental Botany, 70, 4557–4570.
Hussain, A., Shah, F., Ali, F. & Yun, B.W. (2022). Role of nitric oxide in plant senescence. Frontiers in Plant Science, 13, 851631.
Kolenčík, M., Ernst, D., Komár, M., Urík, M., Šebesta, M., Ďurišová, Ľ., Bujdoš, M., Černý, I., Chlpík, J., Juriga, M. & Illa, R. (2022). Effects of foliar application of ZnO nanoparticles on lentil production, stress level and nutritional seed quality under field conditions. Nanomaterials, 12(3), 310.
Kong, J., Dong, Y., Song, Y., Bai, X., Tian, X., Xu, L., Liu, S. & He, Z. (2016). Role of exogenous nitric oxide in alleviating iron deficiency stress of peanut seedlings (Arachis hypogaea L.). Journal of plant growth regulation, 35, 31-43.
Khan, Z.S., Rizwan, M., Hafeez, M., Ali, S., Javed, M.R. & Adrees, M. (2019). The accumulation of cadmium in wheat (Triticum aestivum) as influenced by zinc oxide nanoparticles and soil moisture conditions. Environmental Science and Pollution Research, 26, 19859-19870.
Kushwaha, B.K., Singh, S., Tripathi, D.K., Sharma, S., Prasad, S.M., Chauhan, D.K., Kumar, V. & Singh, V.P. (2019). New adventitious root formation and primary root biomass accumulation are regulated by nitric oxide and reactive oxygen species in rice seedlings under arsenate stress. Journal of hazardous materials, 361, 134-140.
Lichtenthaler, H.K. (1987). Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. In Methods in enzymology (Vol. 148, 350-382). Academic Press.
Mahdieh, M., Sangi, M.R., Bamdad, F. & Ghanem, A. (2018). Effect of seed and foliar application of nano-zinc oxide, zinc chelate, and zinc sulphate rates on yield and growth of pinto bean (Phaseolus vulgaris) cultivars. Journal of Plant Nutrition, 41(18), 2401-2412.
Maret, W. (2017). Zinc in cellular regulation: the nature and significance of “zinc signals”. International journal of molecular sciences, 18(11), 2285.
Mirakhorli, T., Oraghi Ardebili, Z., Ladan-Moghadam, A. & Danaee, E. (2022). Nitric oxide improved growth and yield in soybean (
Glycine max) by mediating physiological, anatomical, and transcriptional modifications.
Journal of Plant Growth Regulation (JPGR), 41, 13311-1343.
https://doi.org/10.1007/s00344-021-10389-0.
Nazerieh, H., Ardebili, Z.O. & Iranbakhsh, A.R. (2018). Potential benefits and toxicity of nanoselenium and nitric oxide in peppermint. Acta Agriculturae Slovenica, 111(2), 357-368.
Plohovska, S.H., Krasylenko, Y.A. & Yemets, A.I. (2019). Nitric oxide modulates actin filament organization in Arabidopsis thaliana primary root cells at low temperatures. Cell Biology International, 43(9), 1020-1030.
Prakash, V., Rai, P., Sharma, N.C., Singh, V.P., Tripathi, D.K., Sharma, S. & Sahi, S. (2022). Application of zinc oxide nanoparticles as fertilizer boosts growth in rice plant and alleviates chromium stress by regulating genes involved in oxidative stress. Chemosphere, 303, 134554.
Putter, J. (1974). In: Methods in enzymatic analysis, 2 (Ed Bergmeyer, A) Academic press. New York, P. 685. Raya-González, J., López-Bucio, J.S. & López-Bucio, J. (2019). Nitric oxide and hydrogen peroxide in root organogenesis. Nitric Oxide and Hydrogen Peroxide Signaling in Higher Plants, 157-173.
Sami, F., Faizan, M., Faraz, A., Siddiqui, H., Yusuf, M. & Hayat, S. (2018). Nitric oxide-mediated integrative alterations in plant metabolism to confer abiotic stress tolerance, NO crosstalk with phytohormones and NO-mediated post translational modifications in modulating diverse plant stress. Nitric Oxide, 73, 22-38.
Santisree, P., Adimulam, S.S., Sharma, K., Bhatnagar-Mathur, P. & Sharma, K.K. (2019). Insights into the nitric oxide mediated stress tolerance in plants. Plant Signaling Molecules (pp. 385-406). Woodhead Publishing.
Semida, W.M., Abdelkhalik, A., Mohamed, G.F., Abd El-Mageed, T.A., Abd El-Mageed, S.A., Rady, M.M. & Ali, E.F. (2021). Foliar application of zinc oxide nanoparticles promotes drought stress tolerance in eggplant (Solanum melongena L.). Plants, 10(2), 421.
Sheteiwy, M.S., Dong, Q., An, J., Song, W., Guan, Y., He, F., Huang, Y. & Hu, J. (2017). Regulation of ZnO nanoparticles-induced physiological and molecular changes by seed priming with humic acid in Oryza sativa seedlings. Plant Growth Regulation, 83, 27-41.
Sheteiwy, M.S., Shaghaleh, H., Hamoud, Y.A., Holford, P., Shao, H., Qi, W., Hashmi, M.Z. & Wu, T. (2021). Zinc oxide nanoparticles: potential effects on soil properties, crop production, food processing, and food quality. Environmental Science and Pollution Research, 28(28), 36942-36966.
Soliman, M., Alhaithloul, H.A., Hakeem, K.R., Alharbi, B.M., El-Esawi, M. & Elkelish, A. (2019). Exogenous nitric oxide mitigates nickel-induced oxidative damage in eggplant by upregulating antioxidants, osmolyte metabolism, and glyoxalase systems. Plants, 8(12), 562.
Soroori, S., Danaee, E., Hemmati, Kh. & Ladan Moghadam, A. (2021). The metabolic response and enzymatic activity of Calendula officinalis L. to foliar application of spermidine, citric acid and proline under drought stress and in a postharvest condition. Journal of Agriculture Scince and Technology, 23 (6), 1339-1353.
Sun, L.R., Yue, C.M. & Hao, F.S. (2020). Update on roles of nitric oxide in regulating stomatal closure. Plant signaling & behavior, 14(10), p.e1649569.
Sym, G.J. (1984). Optimisation of the in‐vivo assay conditions for nitrate reductase in barley (Hordeum vulgare L. cv. Igri). Journal of the Science of Food and Agriculture, 35(7), 725-730.
Ullah, S., Ahmad, A., Ri, H., Khan, A.U., Khan, U.A. & Yuan, Q. (2020). Green synthesis of catalytic zinc oxide nano‐flowers and their bacterial infection therapy. Applied Organometallic Chemistry, 34(1), p.e5298.
Vafaee Moghadam, A., Iranbakhsh, A.R., Saadatmand, S., Ebadi, M. & Ardebili, Z. (2021). New insights into the transcriptional, epigenetic, and physiological responses to zinc oxide nanoparticles in datura stramonium; potential species for phytoremediation. Journal of Plant Growth Regulation. https://doi.org/10.1007/s00344-021-10305-6.
Wany, A., Gupta, A.K., Brotman, Y., Pandey, S., Vishwakarma, A.P., Kumari, A., Singh, P., Pathak, P.K., Igamberdiev, A.U. & Gupta, K.J. (2018). Nitric oxide is important for sensing and survival under hypoxia in Arabidopsis. BioRxiv, p.462218. https://doi.org/10.1101/462218.
Yan, S., Wu, F., Zhou, S., Yang, J., Tang, X. & Ye, W. (2021). Zinc oxide nanoparticles alleviate the arsenic toxicity and decrease the accumulation of arsenic in rice (Oryza sativa L.). BMC plant biology, 21, 1-11.
Zhang, H., Wang, R., Chen, Z., Cui, P., Lu, H., Yang, Y. & Zhang, H. (2021). The effect of zinc oxide nanoparticles for enhancing rice (Oryza sativa L.) yield and quality. Agriculture, 11(12), 1247.