نوع مقاله : علمی پژوهشی - باغبانی

نویسندگان

1 دانشیار، گروه زیست‌شناسی، واحد گرمسار، دانشگاه آزاد اسلامی، گرمسار، ایران

2 دانشیار، گروه علوم باغبانی، واحد گرمسار، دانشگاه آزاد اسلامی، گرمسار، ایران

10.22055/ppd.2024.46944.2170

چکیده

شکی نیست که پیشرفت قابل توجهی در علم و فناوری نانو راه را برای پیشرفت در بسیاری از زمینه‌های مختلف مانند کشاورزی، زیست‌شناسی، غذا و پزشکی هموار کرده است. در میان انواع مختلف اکسیدهای فلزی با مقیاس نانو، نانوذرات اکسید روی (ZnONPs) از جمله پرکاربردترین نانوذرات در صنایع مختلف از جمله کشاورزی، غذایی و دارویی هستند. اکسید نیتریک (NO) یک ماده فعال سیگنالینگ در موجودات زنده از جمله گیاهان شناخته می‌شود که نقش‌های حیاتی را در مراحل مختلف نموی گیاهان در طی چرخه زندگی بازی می‌کند. پاسخ‌های فیزیولوژیک گیاهان زراعی به استفاده طولانی مدت از NO و یا نانوزینک اکسید به طور انفرادی و ترکیبی به خوبی بررسی نشده است و تا حد زیادی ناشناخته باقی مانده است. این تحقیق در سال 1400 در دانشگاه آزاد اسلامی واحد گرمسار انجام شد. هدف این تحقیق، بررسی تاثیر بکارگیری برگی طولانی مدت نیتریک اکسید و نانوزینک اکسید بر رشد، نمو زایشی و فیزیولوژی گیاه گوجه فرنگی است. با توجه به ضرورت رویکرد کشاورزی سازگار، این تحقیق طراحی شد تا اثر کاربرد برگی طولانی مدت نیتریک اکسید و نانوذرات زینک اکسید را بر رشد، نموزایشی، تغذیه و متابولیسم گیاه گوجه فرنگی را ارزیابی کند. این آزمایش در قالب طرح کاملاً تصادفی در 4 گروه تیماری با 3 تکرار مستقل اجرا شد. دانه رست‌های 30 روزه گوجه فرنگی با ZnO-NP در دو غلظت (صفر و 3 میلی‌گرم در لیتر) و یا نیتریک اکسید در دو غلظت صفر و 25 میکرومولار محلول‌پاشی شدند. نتایج نشان داد که تیمارهای NO و ZnONPs به ویژه در تیمار ترکیبی موجب افزایش معنی‌دار زیست توده در اندام هوایی و ریشه نسبت به شاهد شد. تیمارهای بکارگرفته شده ویژگی‌های شاخص در مرحله زایشی گیاه را تحت تاثیر قرارداد. اعمال تیمارهای NO و ZnONPs به مقدار معنی‌داری موجب کاهش زمان ورود به فاز زایشی، افزایش تولید میوه و نیز افزایش زیست توده میوه شدند که دلالت بر اثربخشی این تیمارها بر نمو زایشی گیاه بود. محلول‌پاشی برگی با NO و ZnONPs موجب افزایش میزان عناصر پتاسیم، آهن و روی در برگ و میوه گیاهان تیمارشده نسبت به شاهد شد. تیمارهای NO و ZnONPs به طور تقویت کننده سبب افزایش معنی‌دار محتوای رنگیزه‌های فتوسنتزی شامل کلروفیل a، b و کاروتنوئیدها در برگ نسبت به شاهد شد. بالاترین میزان اسید آمینه پرولین در تیمارهایZnONP  و NO+ZnONP مشاهده شد که به مقدار معنی‌داری بیشتر از گروه شاهد بود. تیمارهای تکی و ترکیبی NO و ZnONPs موجب افزایش معنی‌دار میزان فنل محلول برگ در مقایسه با گروه شاهد شدند. فعالیت آنزیم فنیل آلانین آمونیا لیاز نیز از روندی مشابه فنل محلول تبعیت کرد. همچنین، فعالیت آنزیم آنتی‌اکسیدان پراکسیداز روند افزایشی معنی‌دار نسبت به شاهد در اثر تیمارهای اعمال شده نشان داد. بیشترین فعالیت آنزیم نیترات ردوکتاز در برگ گیاهانی ثبت شد که تحت تیمار ترکیبی NO و ZnONPs بودند. نتایج این تحقیق بیانگر این موضوع بود که محلول‌پاشی برگی با نیتریک اکسید و زینک اکسید در غلظت کم به تعداد دفعات زیاد ضمن کاهش ریسک ناشی از سمیت احتمالی می‌تواند منجر به ارتقا رشد و عملکرد متابولیسم گیاه و نیز تقویت سیستم دفاعی گیاه ‌شود که به ویژه در مورد گیاهان دارویی و زراعی این امر بسیار اهمیت دارد. این یافته‌ها می‌تواند برای طراحی مطالعات آینده در مورد نانو کودها یا آفت‌کش‌ها مفید باشد. این مطالعه همچنین بر ضرورت ارائه داده های مولکولی در مطالعات آتی تاکید می‌کند.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Efficacy of nitric oxide and zinc oxide nanoparticles in improving growth, nutrition, metabolism and reproductive development in tomato

نویسندگان [English]

  • Elham Danaee 1
  • Zahra Oraghi Ardebili 2

1 Associate Professor, Department of Biology, Garmsar Branch, Islamic Azad University, Garmsar, Iran

2 Associate Professor, Department of Horticultural Sciences, Garmsar Branch, Islamic Azad University, Garmsar, Iran

چکیده [English]

Introduction
There is no doubt that significant progress is being made in nanoscience and technology, which has paved the way for advancements in many different fields such as agriculture, biology, food, and medicine. Among the different types of nano-scaled metal oxides, zinc oxide nanoparticles (ZnONPs) are among the most widely employed nano-compounds in various industries, including agriculture, food, and medicine. Nitric oxide (NO) is a bioactive signaling substance in living organisms, including plants, which plays vital roles in different stages of plant development during the life cycle. Physiological responses of crop plants to long-term application of NO or ZnONPs individually and mixed manners have not been well investigated and remain largely unknown. The purpose of this research is to investigate the effect of long-term foliar application of NO or ZnONPs on the growth performance and physiology of tomato plants. Considering the necessity of developing a sustainable agricultural approach, this project was designed to evaluate the effect of long-term foliar application of NO or ZnONPs on the growth, performance, nutrition and metabolism of tomato.
 Materials and methods
This study was implemented as a completely randomized design with four treatment groups and three independent replications. This experiment was conducted in soilless conditions (cocopeat and perlite) in a greenhouse (Islamic Azad University, Garmsar branch, Garmsar). Tomato seedlings was irrigated with Hoagland nutrient solution. 30-days-old tomato seedlings were sprayed with ZnO-NP at two concentrations (0 and 3 mg/L) or NO (0 and 25 μM) 15 times with an interval of 72 hours.
 Results and Discussion
The results showed that NO and ZnONPs treatments, especially in the combined one, caused a significant increase in the biomass in shoot and root compared to the control. The applied treatments also affected the characteristics of the plants in the reproductive stage. The application of NO and ZnONPs treatments significantly reduced the time of entering into the reproductive phase, increased fruit production, and enhanced fruit biomass, which indicated the effectiveness of these treatments on plant reproductive development. Foliar spraying with NO and ZnONPs caused a significant improvement in the content of several essential minerals, including potassium (K+), iron (Fe) and zinc (Zn) in leaves and fruits, compared to the control group. The NO and ZnONPs treatments synergistically and significantly augmented in the concentrations of photosynthetic pigments, including chlorophyll a (Chl a), chlorophyll b (Chl b), and carotenoids in leaves in comparison to the control group. The highest amount of proline amino acid was observed in ZnONP and NO+ZnONP treatment groups, which was significantly higher than the control group. Single and combined treatments of seedlings with NO and ZnONPs led to a significant increase in the content of soluble phenols in leaves compared to the control group. Phenylalanine ammonialyase (PAL) enzyme activity also followed the same trend as soluble phenols. Also, the activity of antioxidant peroxidase enzyme showed a significant up-regulation in response to the application of NO or ZnONPs. The highest activity of nitrate reductase enzyme was recorded in the leaves of plants simultaneously supplemented with NO and ZnONPs.
 Conclusion
The results of this research indicated that foliar spraying with NO or ZnONPs at low concentration can lead to the promotion of plant growth and metabolism and also strengthening the plant's defense system, while reducing the risk of possible toxicity. These findings can be useful for designing future studies on nano-fertilizers or pesticides. This study also emphasizes the necessity of providing transcriptome and proteome data in future studies.

کلیدواژه‌ها [English]

  • Biofortification
  • Elicitor
  • Metal oxides
  • Nanoparticles
  • Nanotechnology
Abdelaziz, A.M., Salem, S.S., Khalil, A.M., El-Wakil, D.A., Fouda, H.M. & Hashem, A.H. (2022). Potential of biosynthesized zinc oxide nanoparticles to control Fusarium wilt disease in eggplant (Solanum melongena) and promote plant growth. BioMetals, 35(3), 601-616.
Abedi, S., Iranbakhsh, A., Oraghi Ardebili, Z. & Ebadi, M. (2020). Nitric oxide and selenium nanoparticles confer changes in growth, metabolism, antioxidant machinery, gene expression, and flowering in chicory (Cichorium intybus L.): potential benefits and risk assessment. Environmental Science and Pollution Research, 28, 3136-3148.
Adil, M., Bashir, S., Bashir, S., Aslam, Z., Ahmad, N., Younas, T., Asghar, R.M.A., Alkahtani, J., Dwiningsih, Y. & Elshikh, M.S. (2022). Zinc oxide nanoparticles improved chlorophyll contents, physical parameters, and wheat yield under salt stress. Frontiers in plant science, 13, p. 932861.
Adrees, M., Khan, Z.S., Hafeez, M., Rizwan, M., Hussain, K., Asrar, M., Alyemeni, M.N., Wijaya, L. & Ali, S. (2021). Foliar exposure of zinc oxide nanoparticles improved the growth of wheat (Triticum aestivum L.) and decreased cadmium concentration in grains under simultaneous Cd and water deficient stress. Ecotoxicology and Environmental Safety, 208, p.111627.
Ahanger, M.A, Aziz, U, Alsahli, A.A, Alyemeni, M.N. & Ahmad, P. (2020). Influence of exogenous salicylic acid and nitric oxide on growth, photosynthesis, and ascorbate-glutathione cycle in salt stressed Vigna angularis. Biomolecules, 10(1), 42.
Ahmed, R., Uddin, M.K., Quddus, M.A., Samad, M.Y.A., Hossain, M.M. & Haque, A.N.A. )2023(. Impact of foliar application of zinc and zinc oxide nanoparticles on growth, yield, nutrient uptake and quality of tomato. Horticulturae, 9(2), 162.
Alhverdizadeh, S. & Danaee, E. (2022). Effect of Humic Acid and Vermicompost on Some Vegetative Indices and Proline Content of Catharanthus roseous under Low Water Stress. Environment and Water Engineering, 9(1), 141-152. doi.org/10.22034/ewe.2022.333951.1745.
Ali, B., Saleem, M.H., Ali, S., Shahid, M., Sagir, M., Tahir, M.B., Qureshi, K.A., Jaremko, M., Selim, S., Hussain, A. & Rizwan, M. (2022). Mitigation of salinity stress in barley genotypes with variable salt tolerance by application of zinc oxide nanoparticles. Frontiers in Plant Science, 13, 973782.
Azam, M., Bhatti, H.N., Khan, A., Zafar, L. & Iqbal, M. (2022). Zinc oxide nano-fertilizer application (foliar and soil) effect on the growth, photosynthetic pigments and antioxidant system of maize cultivar. Biocatalysis and Agricultural Biotechnology, 42, 102343.
Babajani, A., Iranbakhsh, A.R., Ardebili Z.O. & Eslami, B. (2019). Differential growth, nutrition, physiology and gene expression in Melissa officinalis mediated by zinc oxide and elemental selenium nanoparticles. Environmental Science and Pollution Research, 26, 24430–24444. https//doi.org/10.1007/s1135 6-019-05676 –z.
Balotf, S., Islam, S., Kavoosi, G., Kholdebarin, B., Juhasz, A. & Ma, W. (2018). How exogenous nitric oxide regulates nitrogen assimilation in wheat seedlings under different nitrogen sources and levels. PloS one, 13(1): p.e0190269.
Bates, L. S., Waldren, R. P. & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Journal of Plant Soil, 39, 205–207. DOI: 10.1007/BF00018060.
Beaudoin-Eagan, L.D. & Thorpe, T.A. (1985). Tyrosine and phenylalanine ammonia lyase activities during shoot initiation in tobacco callus cultures. Plant Physiology, 78(3), 438-441.
Danaee, E. & Abdossi, V. (2019). Effects of Some Amino Acids and Organic Acids on Enzymatic Activity and Longevity of Dianthus caryophyllus cv. Tessino on at Pre-Harvest Stage. Journal of Ornamental Plants, 9(2), 93-104.
Danaee, E. & Abdossi, V. (2018). Effect of different concentration and application methods of polyamines (Putrescine, Spermine, Spermidin) on some morphological, physiological and enzymatic characteristics and vase life of Rosa hybrida cv. Dolce Vita cut flower. Journal of Ornamental Plants, 8(3), 171-182.
Dimkpa, CO., Singh, U., Bindraban, P.S, Elmer, W.H, Gardea-Torresdey, J.L. & White, J.C. (2019). Zinc oxide nanoparticles alleviate drought-induced alterations in sorghum performance, nutrient acquisition and grain fortification. Science of the Total Environment, 688, 926-934.
Faizan, M., Faraz, A., Yusuf, M., Khan, S.T. & Hayat, S. (2018). Zinc oxide nanoparticle-mediated changes in photosynthetic efficiency and antioxidant system of tomato plants. Photosynthetica, 56, 678-86.
González-Gordo, S., Bautista, R., Claros, M.G., Cañas, A., Palma, J.M. & Corpas, F.J. (2019). Nitric oxide-dependent regulation of sweet pepper fruit ripening. Journal of Experimental Botany, 70, 4557–4570.
Hussain, A., Shah, F., Ali, F. & Yun, B.W. (2022). Role of nitric oxide in plant senescence. Frontiers in Plant Science, 13, 851631.
Kolenčík, M., Ernst, D., Komár, M., Urík, M., Šebesta, M., Ďurišová, Ľ., Bujdoš, M., Černý, I., Chlpík, J., Juriga, M. & Illa, R. (2022). Effects of foliar application of ZnO nanoparticles on lentil production, stress level and nutritional seed quality under field conditions. Nanomaterials, 12(3), 310.
Kong, J., Dong, Y., Song, Y., Bai, X., Tian, X., Xu, L., Liu, S. & He, Z. (2016). Role of exogenous nitric oxide in alleviating iron deficiency stress of peanut seedlings (Arachis hypogaea L.). Journal of plant growth regulation, 35, 31-43.
Khan, Z.S., Rizwan, M., Hafeez, M., Ali, S., Javed, M.R. & Adrees, M. (2019). The accumulation of cadmium in wheat (Triticum aestivum) as influenced by zinc oxide nanoparticles and soil moisture conditions. Environmental Science and Pollution Research, 26, 19859-19870.
Kushwaha, B.K., Singh, S., Tripathi, D.K., Sharma, S., Prasad, S.M., Chauhan, D.K., Kumar, V. & Singh, V.P. (2019). New adventitious root formation and primary root biomass accumulation are regulated by nitric oxide and reactive oxygen species in rice seedlings under arsenate stress. Journal of hazardous materials, 361, 134-140.
Lichtenthaler, H.K. (1987). Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. In Methods in enzymology (Vol. 148, 350-382). Academic Press.
Mahdieh, M., Sangi, M.R., Bamdad, F. & Ghanem, A. (2018). Effect of seed and foliar application of nano-zinc oxide, zinc chelate, and zinc sulphate rates on yield and growth of pinto bean (Phaseolus vulgaris) cultivars. Journal of Plant Nutrition, 41(18), 2401-2412.
Maret, W. (2017). Zinc in cellular regulation: the nature and significance of “zinc signals”. International journal of molecular sciences, 18(11), 2285.
Mirakhorli, T., Oraghi Ardebili, Z., Ladan-Moghadam, A. & Danaee, E. (2022). Nitric oxide improved growth and yield in soybean (Glycine max) by mediating physiological, anatomical, and transcriptional modifications. Journal of Plant Growth Regulation (JPGR), 41, 13311-1343. https://doi.org/10.1007/s00344-021-10389-0.
Nazerieh, H., Ardebili, Z.O. & Iranbakhsh, A.R. (2018). Potential benefits and toxicity of nanoselenium and nitric oxide in peppermint. Acta Agriculturae Slovenica, 111(2), 357-368.
Plohovska, S.H., Krasylenko, Y.A. & Yemets, A.I. (2019). Nitric oxide modulates actin filament organization in Arabidopsis thaliana primary root cells at low temperatures. Cell Biology International, 43(9), 1020-1030.
Prakash, V., Rai, P., Sharma, N.C., Singh, V.P., Tripathi, D.K., Sharma, S. & Sahi, S. (2022). Application of zinc oxide nanoparticles as fertilizer boosts growth in rice plant and alleviates chromium stress by regulating genes involved in oxidative stress. Chemosphere, 303, 134554.
Putter, J. (1974). In: Methods in enzymatic analysis, 2 (Ed Bergmeyer, A) Academic press. New York, P. 685. Raya-González, J., López-Bucio, J.S. & López-Bucio, J. (2019). Nitric oxide and hydrogen peroxide in root organogenesis. Nitric Oxide and Hydrogen Peroxide Signaling in Higher Plants, 157-173.
Sami, F., Faizan, M., Faraz, A., Siddiqui, H., Yusuf, M. & Hayat, S. (2018). Nitric oxide-mediated integrative alterations in plant metabolism to confer abiotic stress tolerance, NO crosstalk with phytohormones and NO-mediated post translational modifications in modulating diverse plant stress. Nitric Oxide, 73, 22-38.
Santisree, P., Adimulam, S.S., Sharma, K., Bhatnagar-Mathur, P. & Sharma, K.K. (2019). Insights into the nitric oxide mediated stress tolerance in plants. Plant Signaling Molecules (pp. 385-406). Woodhead Publishing.
Semida, W.M., Abdelkhalik, A., Mohamed, G.F., Abd El-Mageed, T.A., Abd El-Mageed, S.A., Rady, M.M. & Ali, E.F. (2021). Foliar application of zinc oxide nanoparticles promotes drought stress tolerance in eggplant (Solanum melongena L.). Plants, 10(2), 421.
Sheteiwy, M.S., Dong, Q., An, J., Song, W., Guan, Y., He, F., Huang, Y. & Hu, J. (2017). Regulation of ZnO nanoparticles-induced physiological and molecular changes by seed priming with humic acid in Oryza sativa seedlings. Plant Growth Regulation, 83, 27-41.
Sheteiwy, M.S., Shaghaleh, H., Hamoud, Y.A., Holford, P., Shao, H., Qi, W., Hashmi, M.Z. & Wu, T. (2021). Zinc oxide nanoparticles: potential effects on soil properties, crop production, food processing, and food quality. Environmental Science and Pollution Research, 28(28), 36942-36966.
Soliman, M., Alhaithloul, H.A., Hakeem, K.R., Alharbi, B.M., El-Esawi, M. & Elkelish, A. (2019). Exogenous nitric oxide mitigates nickel-induced oxidative damage in eggplant by upregulating antioxidants, osmolyte metabolism, and glyoxalase systems. Plants, 8(12), 562.
Soroori, S., Danaee, E., Hemmati, Kh. & Ladan Moghadam, A. (2021). The metabolic response and enzymatic activity of Calendula officinalis L. to foliar application of spermidine, citric acid and proline under drought stress and in a postharvest condition. Journal of Agriculture Scince and Technology, 23 (6), 1339-1353.
Sun, L.R., Yue, C.M. & Hao, F.S. (2020). Update on roles of nitric oxide in regulating stomatal closure. Plant signaling & behavior, 14(10), p.e1649569.
Sym, G.J. (1984). Optimisation of the in‐vivo assay conditions for nitrate reductase in barley (Hordeum vulgare L. cv. Igri). Journal of the Science of Food and Agriculture, 35(7), 725-730.
Ullah, S., Ahmad, A., Ri, H., Khan, A.U., Khan, U.A. & Yuan, Q. (2020). Green synthesis of catalytic zinc oxide nano‐flowers and their bacterial infection therapy. Applied Organometallic Chemistry, 34(1), p.e5298.
Vafaee Moghadam, A., Iranbakhsh, A.R., Saadatmand, S., Ebadi, M. & Ardebili, Z. (2021). New insights into the transcriptional, epigenetic, and physiological responses to zinc oxide nanoparticles in datura stramonium; potential species for phytoremediation. Journal of Plant Growth Regulation. https://doi.org/10.1007/s00344-021-10305-6.
Wany, A., Gupta, A.K., Brotman, Y., Pandey, S., Vishwakarma, A.P., Kumari, A., Singh, P., Pathak, P.K., Igamberdiev, A.U. & Gupta, K.J. (2018). Nitric oxide is important for sensing and survival under hypoxia in Arabidopsis. BioRxiv, p.462218. https://doi.org/10.1101/462218.
Yan, S., Wu, F., Zhou, S., Yang, J., Tang, X. & Ye, W. (2021). Zinc oxide nanoparticles alleviate the arsenic toxicity and decrease the accumulation of arsenic in rice (Oryza sativa L.). BMC plant biology, 21, 1-11.
Zhang, H., Wang, R., Chen, Z., Cui, P., Lu, H., Yang, Y. & Zhang, H. (2021). The effect of zinc oxide nanoparticles for enhancing rice (Oryza sativa L.) yield and quality. Agriculture, 11(12), 1247.