نوع مقاله : علمی پژوهشی - اصلاح نباتات

نویسندگان

1 استاد پژوهشی، بخش تحقیقات اصلاح و تهیه نهال و بذر، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

2 مربی پژوهشی، بخش تحقیقات علوم زراعی و باغی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی فارس، سازمان تحقیقات، آموزش و ترویج کشاورزی، داراب، ایران

3 استادیار پژوهشی، بخش تحقیقات علوم زراعی و باغی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی لرستان، سازمان تحقیقات، آموزش و ترویج کشاورزی، خرم‌آباد، ایران.

4 مربی پژوهشی، بخش تحقیقات علوم زراعی و باغی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی صفی‌آباد دزفول، سازمان تحقیقات، آموزش و ترویج کشاورزی، دزفول، ایران.

5 دانشیار پژوهشی، بخش تحقیقات علوم زراعی و باغی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی کرمانشاه، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرمانشاه، ایران

6 استادیار پژوهشی، بخش تحقیقات علوم زراعی و باغی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی فارس، سازمان تحقیقات، آموزش و ترویج کشاورزی، داراب، ایران

چکیده

گندم دوروم (Triticum turgidum L. var. durum) یک محصول مهم برای رژیم غذایی انسان است که در بسیاری از نقاط جهان عمدتاً برای سمولینا و در نتیجه تولید ماکارونی کشت می ­شود. به ­منظور بررسی پایداری عملکرد دانه، 17 لاین امیدبخش گندم دوروم به ­همراه دو شاهد گندم دوروم (هانا و آران) و یک شاهد گندم نان (مهرگان) در مراکز تحقیقات کشاورزی و منابع طبیعی کرمانشاه، خرم­آباد، کرج، دزفول و فارس (داراب) مقایسه شدند. این تحقیق در قالب طرح بلوک­ های کامل تصادفی با 3 تکرار و در دو سال  زراعی (1401-1399) انجام شد. نتایج تجزیه واریانس مرکب عملکرد دانه نشان داد اختلاف بین محیط­ های اجرای آزمایش، ژنوتیپ ­ها و اثر متقابل ژنوتیپ × محیط در سطح 1 درصد معنی­ دار می­باشد. بیشترین عملکرد دانه در سال اول اجرای آزمایش در کرمانشاه (Ker1) (8441 کیلوگرم در هکتار) و کمترین عملکرد دانه در خرم­آباد در سال اول (Kho1) (5648 کیلوگرم در هکتار) و کرج در سال دوم (Kar2) (5961 کیلوگرم در هکتار) مشاهده شد. با توجه به نتایج GGE بای پلات، دو گروه محیطی مشخص گردید. اولین گروه محیطی شامل محیط ­های Kho1، Dar1، Kar1، Kar2 و Dar2 بود و ژنوتیپ ­های 18، 17، 2 و 19 جزء ژنوتیپ­ های برتر در این محیط­ ها بودند. دومین گروه محیطی شامل Kho2، Dez1، Ker2، Dez2 و Ker1 بود و ژنوتیپ ­های 12، 9 و 8 جزء ژنوتیپ ­های برتر در این محیط ­ها بودند. نتایج بای ­پلات نشان داد ژنوتیپ­ های 10، 5، 13، 18 و 16 به ­ترتیب پایداری عملکرد بیشتری نسبت به سایر ژنوتیپ­ ها داشتند. مقایسه ژنوتیپ ­های مورد بررسی با ژنوتیپ ایده­ آل نشان داد که ژنوتیپ ­های 18 و 10 به­ ترتیب نزدیک ­ترین ژنوتیپ­ ها به ژنوتیپ ایده ­آل می ­باشند که علاوه بر عملکرد بالای دانه، دارای پایداری عملکرد بالا نیز هستند. همچنین، Dar2 نزدیک ترین محیط به محیط­ ایده ­آل بود. نتایج نشان داد دسته ­بندی محیط ­ها بر اساس مدل SHMM کاملاً با مدل GGE بای ­پلات انطباق داشت. محیط ­های Dar2 و Ker1 نسبت به سایر محیط ­ها از قابلیت تمایز بالایی برخوردار بودند. در نهایت نتایج نشان داد که ژنوتیپ­ های 18 (DW-99-18) و 10 (Dw-99-10) جزء بهترین ژنوتیپ ­ها از نظر عملکرد دانه بالا و پایداری عملکرد هستند. این لاین ها در آزمایشات تحقیقی- ترویجی در شرایط زارعین مورد بررسی بیشتر قرار خواهند گرفت و هر کدام از آنها که در مزارع زارعین نیز برتری خود را نشان دهد به­ عنوان رقم جدید برای مناطق معتدل و گرم کشور معرفی خواهد شد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Dissection of genotype × environment interaction and yield stability analysis in durum wheat using SHMM and GGE biplot models

نویسندگان [English]

  • Tohid Najafi Mirak 1
  • Manoochehr Dastfal 2
  • Manoochehr Sayyahfar 3
  • Hossein Farzadi 4
  • Shahryar Sasani 5
  • Hassan Zali 6

1 Professor, Seed and Plant Improvement Department, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran

2 Res. Instructor, Crop and Horticultural Science Research Department, Fars Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Darab, IranResearch, Education and Extension Organization (AREEO), Darab, Iran

3 Assistant Prof, Crop and Horticultural Science Research Department, Lorestan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Khorramabad, Iran

4 Res. Instructor, Crop and Horticultural Science Research Department, Dezful Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Dezful, Iran

5 Associate Prof, Crop and Horticultural Science Research Department, Kermanshah Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Kermanshah, Iran

6 Assistant Prof., Crop and Horticultural Science Research Department, Fars Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Darab, Iran

چکیده [English]

Introduction
Durum wheat (Triticum turgidum L. var. durum) is an important crop for the human diet grown in many parts of the world predominantly for semolina and resulting pasta production. The presence of genotype × environment interaction (GEI) is a challenge for breeders in evaluating genotypes in multilocational trials. The use of statistical models such as GGE biplot assist breeders in quantifying and understanding the patterns of GEI and in evaluating the performance of genotypes in various environmental conditions. This allows breeders to select stable and adaptable genotypes for a range of environments. One of the important goals of durum wheat breeding programs is to produce high-yielding cultivars that have suitable characteristics for cultivation in different regions of the country. Therefore, the aim of this research was to select promising durum wheat lines in terms of stability and high grain yield by GGE biplot and SHMM models.
Materials and Methods
In this study, 17 promising lines of durum wheat with three check Hana, Aran, Mehregan in five research centers of Kermanshah, Khorramabad, Karaj, Dezful and Fars (Darab) in the form of randomized complete blocks design in 3 replications and in two cropping seasons (2020-2022) were cultivated and compared. The studied genotypes were planted in six lines along 6 m with a line distance of 15 cm. Seed rate was determined by 450 seeds per square meter considering the thousand kernel weight for each genotype. Seeds were sown using an experimental plot planter (Wintersteiger, Ried, Austria). The fertilizer composition was 32 kg ha-1 nitrogen (twice), and di-ammonium phosphate and potassium sulfate were 100 and 50 kg ha-1, respectively (before planting). After the removal of perimeter plants, all experimental plots were harvested with an experimental grain harvester (Wintersteiger, Ried, Austria).
Results and Discussion
The results of the combined variance analysis of grain yield showed that the differences between the test environments, genotypes and genotype x environment interaction effect are significant at the 1% level.  The highest grain yield in the first year was observed in Kermanshah station (Ker1) (8441 kg ha-1) and the lowest seed yield in Khorramabad in the first year (Kho1) (5648 kg ha-1) and Karaj in the second year (Kar2) (5961 kg ha-1). GGE biplot analysis determined two durum wheat environmental groups. The first environmental group contained of Kho1, Dar1, Kar1, Kar2 and Dar2 environments, where the recommended genotypes 18, 17, 2 and 19 produced the highest yields. The second environmental group comprised of Kho2, Dez1, Ker2, Dez2 and Ker1 environments, where genotypes 12, 9 and 8 were the best adapted genotypes. Biplot results showed that genotypes 10, 5, 13, 18 and 16 were more stable than other genotypes, respectively. Comparison of the examined genotypes with the ideal genotype showed that genotypes 18 and 10 are the closest genotypes to the ideal genotype, which in addition to high grain yield, had high yield stability. Dar2 was the closest environment to the ideal environment. The results showed that the classification of environments based on the SHMM model was completely consistent with the GGE biplot model. Based on environmental vector of the biplot, Dar2 and Ker1 had high discriminating ability for the genotypes. Also, Dezful in the first and second year (Dez1 and Dez2), Karaj in the second year (Kar2) and Kermanshah in the second year (Ker2) showed low discriminating ability for genotypes. The environments that were placed in the same group were close to each other in terms of genotype x environment interaction values. Based on the SHMM model, the environments with the least cross over effects are placed in one group. Accordingly, the placement of Kermanshah and Dezful in the same group indicates the relative similarity of these places. Also, these results were confirmed by the GGE biplot model.
 Conclusion
As a conclusion, GGE biplot identified G10 (DW-99-10) and G18 (DW-99-18) as the superior durum wheat genotypes which that can be released as new commercial cultivars for the temperate and warm regions of Iran.

کلیدواژه‌ها [English]

  • Grain yield
  • Heat map
  • Multivariate methods
  • Promising genotypes
  • Yield performance
Ahmadi, A., Omidi, M., Alizadeh, B., & Shah nejat Bushehri, A.A. (2021). Evaluation of adaptation and sustainabilit of winter oilseed rape mutant lines in cold and mild cold regions of Iran by GGE biplot method. Plant Productions, 44(3), 345-355.
Amelework, A.B., Bairu, M.W., Marx, R., Laing, M., & Venter, S.L. (2023). Genotype × environment interaction and stability analysis of selected cassava cultivars in South Africa. Plants, 12, 2490.
Anderson, T., & Lee, C. R. (2014). Strong selection genome-wide enhances fitness trade-offs across environments and episodes of selection. Evolution, 68, 16–31.
Barati, A., Zali, H., Lakzadeh, I., Koohkan, Sh., Jafarby, J., Hosseinpour, A., Jabari, M., Marzoghiyan, A., & Kheirgo, M. (2020). Evaluation of yield stability of barley promising lines using AMMI SHMM methods. Cereal Research, 10(3), 245-257. [In Persian]
Baye, T. M., Abebe, T., & Wilke, R.A. (2011). Genotype–environment interactions and their translational implications. Per Med, 8(1), 59-70.
Crossa, J., Cornelius, P., Seyedsadr, M., & Byrne, P. (1993). A shifted multiplicative model cluster analysis for grouping environments without genotypic rank change. Theoretical and Applied Genetics, 85, 577-586.
Crossa, J., & Cornelius, P. L. (1993). Recent developments in multiplicative models for cultivar trials. In International Crop Science I, Buxton DR, Shibles R, Forfberg RA, Blad BL, Asay KH, Paulsen GM, Wilson RF (Eds.), pages 571-577. Crop Science Society of America, Madison, Wisconsin.
Cornelius, P. L., Seyedsadr, M., & Crossa, J. (1992). Using the shifted multiplicative model to search for "reparability" in crop cultivar trials. Theoretical and Applied Genetics, 84, 161-172.
Dastfal, M., Aghaee-Sarbarzeh, M., & Zali, H. (2022). Genetic diversity and selection of durum wheat pure lines with desirable agronomy traits using SIIG index. Iranian Journal of Field Crop Science, 53(1), 161-174. [In Persian]
Esmaeilzadeh Moghaddam, M., Tahmasebi, S., Ayeneh, G.A.L.A., Akbari Moghadam, H., Mahmoudi, K., Sayyahfar, M., Tabib Ghaffari, S.M. & Zali, H. (2018). Yield stability evaluation of bread wheat promising lines using multivariate methods. Cereal Research, 8(3), 333-344. [In Persian]
Gauch, H.G. (2006). Statistical analysis of yield trials by AMMI and GGE. Crop Science, 46, 1488-1500.
Gauch, H.G. (2013). A simple protocol for AMMI analysis of yield trials. Crop Science, 53, 1860-1869.
Gonzalez-Segura, E., Magaña-Barajas, E., Torres-Chávez, P.I., Manthey, F., & Ramírez-Wong, B. (2014). Characterization of the dynamic viscoelastic behavior of semolina dough obtained from mexican durum Wheat cultivars. Advanced Chemical Engineering, 3, 58-63.
Hernandez-Segundo, E., Capettini, F., Trethowan, R., Ginkel, M., Mejia, A., Carballo, A., Crossa, J., Vargas, M., & Balbuena-Melgarejo, A. (2009). Mega-environment identification for barley based on twenty-seven years of global grain yield data. Crop Science, 49, 1705-1718.
Hossain, M.A., Sarker, U., Azam, M.G., Kobir, M.S., Roychowdhury, R., Ercisli, S., Ali, D., Oba, S., & Golokhvast, K.S. (2023) Integrating BLUP, AMMI, and GGE models to explore GE interactions for adaptability and stability of winter lentils (Lens culinaris Medik.). Plants, 12, 2079.
International Grains Council. (2021). IGC, International Grains Council. Accessed on 15 January 2023. Available online: https://www.igc.int/en/default.aspx.
Karimizadeh, R., & Mohammadi, M. (2015). Using SHHM model for clustering test environments of lentil in multi-environmental trials. Current Opinion in Agriculture, 4(1), 33-37.
Karimizadeh, R., Pezeshkpour, P., Barzali, M., Mehraban, A., & Sharifi, P. (2020). Evaluation the mean performance and stability of lentil genotypes by combining features of AMMI and BLUP techniques. Journal of Crop Breeding, 12 (36), 160-170. (In Persian)
Linus, R.A., Olanrewaju, O.S., Oyatomi, O., Idehen, E.O., & Abberton, M. (2023) Assessment of yield stability of bambara groundnut (Vigna subterranea (L.) Verdc.) using genotype and genotype–environment interaction biplot analysis. Agronomy, 13, 2558.
Mohammadi, R., Armion, M., Sadeghzadeh, B., Golkari, S., Khalilzadeh, Gh., Ahmadi, H., Abedi-Asl, Gh., & Eskandari, M. (2016). Assessment of grain yield stability and adaptability of rainfed durum wheat breeding lines. Applied Field Crops Research, 29 (4), 25-42. [In Persian].
Najafi Mirak, T., Dastfal, M., Andarzian, B., Farzadi, H., Bahari, M., & Zali, H. (2018). Evaluation of durum wheat cultivars and promising lines for yield and yield stability in warm and dry areas using AMMI model and GGE biplot. Journal of Crop Breeding, 10 (28),1-12
Najafi Mirak, T., Dastfal, M., Sasani, Sh., Sayyahfar, M., Farzadi, H., Naghipour, F., & Zali, H. (2023). Selection of promising durum wheat lines based on grain yield and yield stability using graphic methods and quality indexes. Crop Production Journal, 16 (3), 91-108.
Olivoto, T. & Nardino, M. (2020). MGIDI: A novel multi-trait index for genotype selection in plant breeding. Bioinformatics, 1-22.
Pour-Aboughadareh, A., Koohkan, S., Zali, H., Marzooghian,A., Gholipour, A., Kheirgo, M., Barati, A., Bocianowski, J., & Askari-Kelestani, A. (2023). Identification of high-yielding genotypes of barley in the warm regions of Iran. Plants, 12, 3837.
Rodrigues, P.C., Malosetti, M., Gauch, H.G., & van Eeuwijk, F.A. (2014). A Weighted AMMI Algorithm to Study Genotype-by-Environment Interaction and QTL-by-Environment Interaction. Crop Science, 54, 1555–1570.
Yan, W., & Rajcan, I. (2002). Biplot analysis of sites and trait relations of soybean in Ontario. Crop Science, 42, 11-20.
Seyedsadr, M., & Cornelius, P. L. (1992). Shifted multiplicative model for nonadditive two-way tables. Communications in Statistics - Simulation and Computation, 21: 807-822.
Taleghani, D., Rajabi, A., Saremirad, A., & Khodadadi, Sh. (2023). Genotype- environment interaction analysis and selection of sugar beet stable genotypes in terms of white sugar yield using AMMI model. Plant Productions, 46(2), 155-169.
Threthowan, R. M., Ginkel, M. V., Ammar, K., Crossa, J., Payne, T. S., Cukadar, B., Rajaram, S., & Hernandez, E. (2003). Associations among twenty years of international bread wheat yield evaluation environments. Crop Science, 43, 1698-1711.
Yan, W. (2001). GGEbiplot-A widows application for graphical analysis of multienvironment trial data and other types of two-way data. Agronomy Journal, 93, 1111-1118.
Yan, W., Hunt, L.A., Sheny, Q., & Szlavnics, Z. (2000). Cultivar evaluation and mega-environment investigation based on the GGE biplot. Crop Science, 40, 597- 605.
Yan, W., & Kang, M. S. (2003). GGE biplot analysis: A graphical tool for breeders, Geneticists and agronomists. CRC Press, Boca Raton, FL.
Yan, W., & Rajcan, I. (2002). Biplot analysis of sites and trait relations of soybean in Ontario. Crop Science, 42, 11-20.
Yan, W., & Tinker, N.A. (2005). An integrated biplot analysis system for displaying, interpreting and exploring genotype × environment interaction. Crop Science, 45, 1004-1016.
Zali, H., Barati, A., & Jabari, M. (2021). Evaluation of variation at barley inbred lines (Hordeum vulgare L.) using SIIG Index. Journal of Crop breeding, 13 (39), 179-194.