نوع مقاله : علمی پژوهشی - تنش محیطی یا زیستی

نویسندگان

1 دانش‌آموخته کارشناسی ارشد، گروه زیست‌شناسی، دانشکده علوم، دانشگاه زنجان، ایران.

2 استادیار، استاد مدعو گروه علوم کشاورزی، دانشکده دختران شریعتی و باهنر پاکدشت، دانشگاه فنی و حرفه‌ای، تهران، ایران.

3 استادیار، گروه زیست‌شناسی، دانشکده علوم، دانشگاه زنجان، ایران

4 دانشیار، گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران.

چکیده

تنش شوری از مهمترین عوامل غیرزنده کاهش‌دهنده عملکرد گیاهان محسوب می‌شود. کینوا گیاهی با ارزش غذایی بالا و متحمل به شوری بوده که این تحمل در بین ارقام کینوا بسیار متفاوت است. آزمایش حاضر به‌منظور بررسی اثر تنش شوری بر ویژگی‌های مورفوفیزیولوژیکی و عملکرد دانه ارقام کینوا، به‌صورت طرح بلوک‌های کامل تصادفی با سه تکرار در گلخانه دانشکده کشاورزی دانشگاه زنجان در سال 1399 اجرا شد. فاکتورهای آزمایش شامل سه سطح شوری صفر، 15 و30 دسی‌زیمنس ‌بر متر و سه رقم کینوا (Giza 1،Titicaca  وQ 26) بود. رقم Titicaca در شوری 30 دسی‌زیمنس، کمترین ارتفاع بوته (23 سانتی‌متر) و شاخص سبزینگی (7/34) را داشت. رقم Giza 1 بالاترین وزن خشک اندام هوایی (2/1 گرم در بوته) و کمترین وزن خشک ریشه (11/0 میلی‌گرم در گرم وزن خشک) را دارا بود. همچنین رقم Q 26 کمترین وزن خشک اندام هوایی و بالاترین سطح برگ و وزن خشک ریشه را داشت. همچنین با وجود تفاوت در غلظت عناصر پتاسیم، سدیم و نسبت سدیم به پتاسیم در اندام‌های ساقه، ریشه و برگ، تفاوت معنی‌داری از نظر عملکرد دانه در بین ارقام مورد بررسی مشاهده نشد. بالاترین غلظت سدیم و پتاسیم ریشه به ترتیب با 30/0 و 16/0 میلی‌گرم بر گرم وزن خشک در رقم Q 26 مشاهده گردید، در حالی که کمترین نسبت سدیم به پتاسیم برگ  (67/0 میلی‌گرم بر گرم وزن خشک) را داشت. به‌طور کلی نتایج نشان داد که ارقام کینوا در شرایط شوری، واکنش متفاوتی داشته که احتمالاً منشأ ارقام در این امر دخیل باشد. بر همین اساس پیشنهاد می‌گردد که در انتخاب ارقام در پژوهش‌های آتی، منشأ آن‌ها نیز مد نظر قرار گیرد. 

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Effects of salinity stress on some morpho-physiological traits and grain yield of quinoa cultivars under greenhouse conditions

نویسندگان [English]

  • Mojtaba Kaboodkhani 1
  • Hadi Salek Mearaji 2
  • Keyvan Aghaei 3
  • Afshin Tavakoli 4

1 M.Sc. Graduated, Department of Biology, Faculty of Science, University of Zanjan, Zanjan, Iran.

2 Assistant Professor, Visiting Professor Department of Agricultural Science, Faculty of Shariati & Bahonar Pakdasht, Technical and Vocational University (TVU), Tehran, Iran.

3 Assistant Professor, Department of Biology, Faculty of Science, University of Zanjan, Zanjan, Iran

4 Associate Professor, Department of Production Engineering and Plant Genetics, University of Zanjan, Zanjan, Iran

چکیده [English]

Introduction
Since plants cannot move, they face many environmental stresses. Salinity is a major threat to modern agriculture, causing inhibition and impairment of crop growth and development. Salinity stress affects all vital plant processes such as photosynthesis, protein and metabolism of fat in the plant, causing changes in morphological, physiological, biochemical and molecular functions of the plant, which ultimately decreases plant yield. Due to high nutritional value and high resistance to abiotic stresses such as salinity and drought, quinoa (Chenopodium quinoa willd.) has been proposed to ensure food security in the world. Quinoa genotypes have different morphological and physiological mechanisms in terms of germination, growth and grain yield under salinity stress. Considering the differences in salinity resistance in different quinoa cultivars, this study was carried out for investigating the physiological responses and seed yield of three quinoa cultivars with different origins under salinity stress.
 Materials and Methods
This experiment carried out as random complete block design with three replications in the greenhouse of the Faculty of Agriculture of Zanjan University during the year 2019. The experimental treatments included three salinity levels of 0, 15 and 30 dS m-1 and three quinoa varieties (Giza1, Titicaca and Q26) with different origins. First, soil with a ratio of 50% sieved farm soil, 30% sand and 20% rotted manure was added inside the 1 kg pots. Inside each pot, 10 seeds were planted then irrigated with desired concentrations of salinity. The temperature of the greenhouse during the day was 27±2 and at night 19±2 ˚C, and the relative humidity was 65-75%. After the seedlings were fully established, four plants were kept in each pot and the rest were removed. The volume of irrigation water was 400 cc for each pot with the desired concentration of salinity. In the following, the desired traits were measured based on the mentioned protocols in specific stages. After measuring the desired traits, variance analysis of the data was done with SAS software version 9.1, comparison of average data was done using Duncan's multiple range test (P>0.05).
 Results and Discussion
Salinity stress had a significant effect on all the traits studied except the potassium concentration of the root. Salinity reduced the plant height, leaf area, greenness index, grain yield, dry weight shoot and root, but salinity caused increase in the amount of sodium in the root, stem and leaves. The highest and lowest grain yields, with 0.87 and 0.56 g plant-1 were observed in the control and 30 dS m-1 salinity treatments, respectively. The Titicaca cultivar with 25.7 cm, had the lowest plant height. The highest shoot dry weight, stem sodium concentration, Na+/K+ ratio in root and Na+/K+ ratio in stem were observed in the Giza 1 cultivar. The Q26 cultivar had highest height of plant (33.8 cm), leaf area (3865.8 cm2plant-1), root sodium (0.30 mg.g-1 dry weight) and potassium (0.16 mg.g-1 dry weight) concentration, while it had the lowest Na+/K+ ratio in leaf with 0.67 mg.g-1 dry weight. Traits such as leaf potassium concentration and grain yield were similar among the studied cultivars. Also, cultivar Q26 had the lowest Na+/K+ ratio in the leaves with 0.67 mg.g-1 dry weight. The leaf greenness index in the control and salinity of 15 dS.m-1 was the same among all studied cultivars, but in the salinity of 30 dS.m-1, the Titicaca cultivar had the lowest amount. Among the studied cultivars, Giza 1 cultivar had the lowest root dry weight, while it had the highest Na+/K+ ratio in root and stem (8.27 and 3.6 mg.g-1 dry weight, respectively) among all salinity treatments. The Titicaca cultivar had the highest stem potassium concentration of all salinity levels in studied cultivars.
 Conclusions
 The results obtained from this research showed that high salinity concentrations decreased the grain yield of quinoa. In general, the results showed that the cultivars examined in this research (Giza1, Titicaca and Q26) were different from each other in terms of traits related to salinity resistance. The results showed that the origin of cultivars probably plays a role in the resistance to salinity. Also, despite the difference in the concentration of elements potassium, sodium and Na+/K+ ratio in the stem, root and leaf organs, and no significant difference was observed in terms of grain yield among the studied cultivars. Therefore, it is suggested to consider their origin in the selection of cultivars for future research.

کلیدواژه‌ها [English]

  • Chenopodium quinoa
  • Greenness index
  • Leaf area
  • Potassium
  • Root dry weight
  • Sodium
Adolf, V.I., Jacobsen, S.E., & Shabala, S. (2013). Salt tolerance mechanisms in quinoa (Chenopodium quinoa Willd.). Environmental and Experimental Botany, 92, 43-54.
Algosaibi, A.M., El-Garawany, M.M., Badran, A.E., & Almadini, A. M. (2015). Effect of irrigation water salinity on the growth of quinoa plant seedlings. Journal of Agricultural Science, 7(8), 205-214.
Alizadeh, A. 2014. Soil, water and plant relationship. Sajad University of technology press. 876 p. [In Persian]
Beyrami, H., Rahimian, M.H., Salehi, M., & Yazdani-Biouki, R. (2020). Effect of different levels of irrigation water salinity on quinoa (Chenopodium quinoa) yield and yield components in spring planting. Journal of Crop Production, 12(4), 111-120. [In Persian]
Biondi, S., Ruiz Karina, B., Martinez Enrique, A., Zurita-Silva, A., Orsini, F., Antognoni, F., Dinelli G., Marotti, I., Gianquinto, G., Maldonado, S., Burrieza, H., Bazile, D., Adolf, V.I., & Jacobsen, S.E. (2015). Chapter book in: State of the art report on quinoa around the world in 2013. Bazile, D., Bertero, H. D., & Nieto, C. (Ed.), pp. 143-156.
Cai, Z.Q., & Gao, Q. (2020). Comparative physiological and biochemical mechanisms of salt tolerance in five contrasting highland quinoa cultivars. BMC plant biology, 20(1), 1-15.
Chutipaijit, S., Cha-um, S., & Sompornpailin, K. (2011). High contents of proline and anthocyanin increase protective response to salinity in Oryza sativa L. spp. indica. Australian Journal of Crop Science, 5(10), 1191-1198.
Emami, A. (1996). Plant decomposition methods. Vol. 1. Technical leaflet No. 982. Soil and Water. Research Institute, Tehran, Iran. [In Persian]
FAO. (2013). Nutritional value- International Year of Quinoa 2013. http://www.fao.org/quinoa-2013/what-isquinoa/nutritional-value/en.
Fuentes, F., & Paredes-Gónzalez, X.I.M.E.N.A. (2013). Nutraceutical perspectives of quinoa: biological properties and functional applications. FAO and CIRAD: state of the art report of quinoa in the world, pp. 286-299.
González, J.A., Hinojosa, L., Mercado, M.I., Fernández-Turiel, J.L., Bazile, D., Ponessa, G.I., Eisa, S., González, D.A., Rejas, M., Hussin, S., & Ebrahim, M.E. (2021). A long journey of CICA-17 quinoa variety to salinity conditions in Egypt: Mineral concentration in the seeds. Plants, 10(2), 407-419.
Hao, S., Wang, Y., Yan, Y., Liu, Y., Wang, J., & Chen, S. (2021). A review on plant responses to salt stress and their mechanisms of salt resistance. Horticulturae, 7(6), 132-161.
Hariadi, Y., Marandon, K., Tian, Y., Jacobsen, S.E., & Shabala, S. (2011). Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) plants grown at various salinity levels. Journal of experimental botany, 62(1), 185-193.
Hatami A. A., Aminian, R., Mafakheri, S., & Soleimani Aghdam, M. (2022). Effect of gamma amino butyric acid on morpho-physiological traits and seed yield of quinoa under salinity stress. Plant Productions, 44(4), 559-572. doi 10.22055/ppd.2021.35988.1960
Jagła, M., Szulc, P., Ambroży-Deręgowska, K., Mejza, I., & Kobus-Cisowska, J. (2019). Yielding of two types of maize cultivars in relation to selected agrotechnical factors. Plant, Soil and Environment, 65(8), 416-423.
Jamali, S., & Sharifan, H. (2018). Investigation the effect of different salinity levels on yield and yield components of quinoa (cv. Titicaca). Journal of Soil and Water Conservation 25(2): 251-266. [In Persian]
Jaramillo Roman, V., van de Zedde, R., Peller, J., Visser, R.G., van der Linden, C.G., & van Loo, E.N. (2021). High-resolution analysis of growth and transpiration of quinoa under saline conditions. Frontiers in plant science 1-18.
Khan, M. M., Al-Mas’oudi, R.S., Al-Said, F., & Khan, I. (2013). Salinity effects on growth, electrolyte leakage, chlorophyll content and lipid peroxidation in cucumber (Cucumis sativus L.). In International Conference on Food and Agricultural Sciences Malaysia: IACSIT Press, 55, 28-32.
Kiani-Pouya, A., Rasouli, F., Bazihizina, N., Zhang, H., Hedrich, R., & Shabala, S. (2019). A large-scale screening of quinoa accessions reveals an important role of epidermal bladder cells and stomatal patterning in salinity tolerance. Environmental and Experimental Botany, 168, 1-10.
Kromdijk, J., & Long, S.P. (2016). One crop breeding cycle from starvation? How engineering crop photosynthesis for rising CO2 and temperature could be one important route to alleviation. Proceedings of the Royal Society B: Biological Sciences, 283(1826), 1-8.
Lawlor, D.W., & Cornic, G. (2002). Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant, cell & environment, 25(2), 275-294.
Orsini, F., Accorsi, M., Gianquinto, G., Dinelli, G., Antognoni, F., Carrasco, K.B.R., Martinez E.A., Alnayef, M., Marotti, I., Bosi, S., & Biondi, S. (2011). Beyond the ionic and osmotic response to salinity in Chenopodium quinoa: functional elements of successful halophytism. Functional Plant Biology, 38(10), 818-831.
Panuccio, M.R., Jacobsen, S.E., Akhtar, S.S., & Muscolo, A. (2014). Effect of saline water on seed germination and early seedling growth of the halophyte quinoa. AoB Plants, 6, 1-18.
Parihar, P., Singh, S., Singh, R., Singh, V.P., & Prasad, S.M. (2015). Effect of salinity stress on plants and its tolerance strategies: a review. Environmental science and pollution research, 22(6), 4056-4075.
Roman, V.J., den Toom, L.A., Gamiz, C.C., van der Pijl, N., Visser, R.G., van Loo, E.N., & van der Linden, C.G. (2020). Differential responses to salt stress in ion dynamics, growth and seed yield of European quinoa varieties. Environmental and Experimental Botany, 177, 104-146.
Roy, S.J., Negrão, S., Tester, M., 2014. Salt resistant crop plants. Current opinion in Biotechnology 26: 115-124.
Saad-Allah, K.M., & Youssef, M.S. (2018). Phytochemical and genetic characterization of five quinoa (Chenopodium quinoa Willd.) genotypes introduced to Egypt. Physiology and Molecular Biology of Plants, 24, 617-629.
Sanghera, G.S., Wani, S.H., Hussain, W., & Singh, N.B. (2011). Engineering cold stress tolerance in crop plants. Current genomics, 12(1), 30-43.
Shabala, S., & Cuin T.A., (2008). Potassium transport and plant salt tolerance. Physiologia Plantarum, 133, 651–669.
Shabala, L., Mackay, A., Tian, Y., Jacobsen, S. E., Zhou, D., & Shabala, S. (2012). Oxidative stress protection and stomatal patterning as components of salinity tolerance mechanism in quinoa (Chenopodium quinoa). Physiologia Plantarum, 146(1), 26-38.
Sharifan, H., Jamali, S., & Sajadi, F. (2018). Investigation the effect of different salinity levels on the morphological parameters of quinoa (Chenopodium quinoa willd.) under different irrigation regimes. Journal of Water and Soil Science, 22 (2), 15-27. [In Persian]
Shelden, M.C., Roessner, U., Sharp, R.E., Tester, M., & Bacic, A. (2013). Genetic variation in the root growth response of barley genotypes to salinity stress. Functional Plant Biology, 40(5), 516-530.
Sogoni, A., Jimoh, M. O., Kambizi, L., & Laubscher, C.P., (2021). The impact of salt stress on plant growth, mineral composition, and antioxidant activity in Tetragonia decumbens mill.: An underutilized edible halophyte in South Africa. Horticulturae, 7(6), 1-13.
Tapia, M. (2015). The Long Journey of Quinoa: Who wrote its history? In State of the Art Report on Quinoa around the World 2013; Bazile, D., Bertero, H.D., Nieto, C., Eds.; FAO: Santiago, Chile; CIRAD: Montpellier, France, 1, 1-7.
Toderich, K.N., Mamadrahimov, A.A., Khaitov, B.B., Karimov, A.A., Soliev, A.A., Nanduri, K. R., & Shuyskaya, E.V. (2020). Differential Impact of Salinity Stress on Seeds Minerals, Storage Proteins, Fatty Acids, and Squalene Composition of New Quinoa Genotype, Grown in Hyper-Arid Desert Environments. Frontiers in Plant Science, 11, 1-15
Wani, S.H., & Sah, S.K. (2014). Biotechnology and abiotic stress tolerance in rice. Journal of Rice Research, 2(2), 100-105.