Aebi, H., (1984). Catalase in vitro. In Methods in enzymology. 105, pp. 121-126. Academic press.
Ahmad, P., Alyemeni, M.N., Al-Huqail, A.A., Alqahtani, M.A., Wijaya, L., Ashraf, M., & Bajguz, A. (2020). Zinc oxide nanoparticles application alleviates arsenic (As) toxicity in soybean plants by restricting the uptake of as and modulating key biochemical attributes, antioxidant enzymes, ascorbate-glutathione cycle and glyoxalase system. Plants, 9(7), 825.
Al-Qurainy, F., Khan, S., Alansi, S., Nadeem, M., Alshameri, A., Gaafar, A. R., & Alfarraj, N.S. (2021). Impact of Phytomediated Zinc Oxide Nanoparticles on Growth and Oxidative Stress Response of In Vitro Raised Shoots of Ochradenus arabicus. BioMed Research International.
Amirjani, M.R., Askari, M., & Askari, F. (2014). Effect of nano zinc oxide on alkaloids, enzymatic and antienzymatic antioxidant contents and some physiological parameters of Catharantus roseus. Journal of Cell & Tissue (JCT), 5(2), 173-83.
Asati, A., Santra, S., Kaittanis, C., & Perez, J.M. (2010). Surface-charge-dependent cell localization and cytotoxicity of cerium oxide nanoparticles. ACS nano, 4(9), 5321-5331.
Azam, M., Bhatti, H.N., Khan, A., Zafar, L., & Iqbal, M. (2022). Zinc oxide nano-fertilizer application (foliar and soil) effect on the growth, photosynthetic pigments and antioxidant system of maize cultivar. Biocatalysis and Agricultural Biotechnology, 42, 102343.
Babaei, K., Seyed Sharifi, R., Pirzad, A., & Khalilzadeh, R. (2017). Effects of bio fertilizer and nano Zn-Fe oxide on physiological traits, antioxidant enzymes activity and yield of wheat (Triticum aestivum L.) under salinity stress. Journal of Plant Interactions, 12(1), 381-389.
Bradford, M.M., (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72(1-2), 248-254.
Chanu, T.T., & Upadhyaya, H. (2019). Zinc oxide nanoparticle-induced responses on plants: a physiological perspective. In Nanomaterials in plants, algae and microorganisms (pp. 43-64). Academic Press.
Cui, W., Fang, P., Zhu, K., Mao, Y., Gao, C., Xie, Y., & Shen, W. (2014). Hydrogen-rich water confers plant tolerance to mercury toxicity in alfalfa seedlings. Ecotoxicology and Environmental Safety, 105, 103-111.
Dietz, K.J., & Herth, S. (2011). Plant nanotoxicology. Trends in plant science, 16(11), 582-589.
Faizan, M., Bhat, J.A., Hessini, K., Yu, F., & Ahmad, P. (2021). Zinc oxide nanoparticles alleviates the adverse effects of cadmium stress on Oryza sativa via modulation of the photosynthesis and antioxidant defense system. Ecotoxicology and Environmental Safety, 220, 112401.
Farahi, S.M.M., Yazdi, M.E.T., Einafshar, E., Akhondi, M., Ebadi, M., Azimipour, S., & Iranbakhsh, A. (2023). The effects of titanium dioxide (TiO2) nanoparticles on physiological, biochemical, and antioxidant properties of Vitex plant (Vitex agnus-Castus L). Heliyon, 9(11).
Fernández-Poyatos, M.D.P., Ruiz-Medina, A., Zengin, G., & Llorent-Martínez, E.J. (2019). Phenolic characterization, antioxidant activity, and enzyme inhibitory properties of Berberis thunbergii DC. leaves: A valuable source of phenolic acids. Molecules, 24(22), 4171.
García-López, J.I., Niño-Medina, G., Olivares-Sáenz, E., Lira-Saldivar, R.H., Barriga-Castro, E.D., Vázquez-Alvarado, R., & Zavala-García, F. (2019). Foliar application of zinc oxide nanoparticles and zinc sulfate boosts the content of bioactive compounds in habanero peppers. Plants, 8(8), 254.
Ghanbari, M., Mokhtassi-Bidgoli, A., Mansour Ghanaei-Pashaki, K., & Talebi-Siah Saran, P. (2021). Evaluation of Morpho-Physiological and Biochemical Characteristics of Sunflower (Helianthus annuus L.) in Response to Different Irrigation Regimes and Spraying of Zn and Mn Nano-Fertilizers. Plant Productions, 44(4), 475-488. [In Persian]
Gitelson, A.A., & Merzlyak, M.N. (1997). Remote estimation of chlorophyll content in higher plant leaves. International Journal of Remote Sensing, 18(12): 2691-2697.
Gulen, H., & Eris, A. (2004). Effect of heat stress on peroxidase activity and total protein content in strawberry plants. Plant Science, 166(3): 739-744.
Hossain, Z., Mustafa, G., & Komatsu, S. (2015). Plant responses to nanoparticle stress. International journal of molecular sciences, 16(11), 26644-26653.
Jahani, S., Saadatmand, S., Mahmoodzadeh, H. & Khavari-Nejad, R.A. (2019). Effect of foliar application of cerium oxide nanoparticles on growth, photosynthetic pigments, electrolyte leakage, compatible osmolytes and antioxidant enzymes activities of Calendula officinalis L. Biologia, 74(9): 1063-1075.
Khan, I., Najeebullah, S., Ali, M. & Shinwari, Z.K., (2016). Phytopharmacological and ethnomedicinal uses of the Genus Berberis (Berberidaceae): A review. Tropical Journal of Pharmaceutical Research, 15(9): 2047-2057.
Kumari, N., Varghese, B.A., Khan, M.A., Jangra, S. & Kumar, A. (2020). Abiotic elicitation: a tool for producing bioactive compounds. Plant Archives, 20: 2683-2689.
Li, X., Yang, Y., Jia, L., Chen, H., & Wei, X. (2013). Zinc-induced oxidative damage, antioxidant enzyme response and proline metabolism in roots and leaves of wheat plants. Ecotoxicology and environmental safety, 89, 150-157.
Ma, C., Liu, H., Guo, H., Musante, C., Coskun, S.H., Nelson, B.C., & Dhankher, O.P. (2016). Defense mechanisms and nutrient displacement in Arabidopsis thaliana upon exposure to CeO2 and In2O3 nanoparticles. Environmental Science: Nano, 3(6), 1369-1379.
Malan, C., Greyling, M.M. & Gressel, J. (1990). Correlation between CuZn superoxide dismutase and glutathione reductase, and environmental and xenobiotic stress tolerance in maize inbreds. Plant Science, 69(2): 157-166.
Mazaheri-Tirani, M., & Dayani, S. (2020). In vitro effect of zinc oxide nanoparticles on Nicotiana tabacum callus compared to ZnO micro particles and zinc sulfate (ZnSO4). Plant Cell, Tissue and Organ Culture (PCTOC), 140(2), 279-289.
Mishra, S. R., & Ahmaruzzaman, M. (2021). Cerium oxide and its nanocomposites: Structure, synthesis, and wastewater treatment applications. Materials Today Communications, 28, 102562.
Misra, H.P., & Fridovich, I. (1972). The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. Journal of Biological chemistry, 247(10): 3170-3175.
Mohammadi, M.H.Z., Panahirad, S., Navai, A., Bahrami, M.K., Kulak, M., & Gohari, G. (2021). Cerium oxide nanoparticles (CeO2-NPs) improve growth parameters and antioxidant defense system in Moldavian Balm (Dracocephalum moldavica L.) under salinity stress. Plant Stress, 1, 100006.
Morales, M.I., Rico, C.M., Hernandez-Viezcas, J.A., Nunez, J.E., Barrios, A.C., Tafoya, A., Flores-Marges, J.P., Peralta-Videa, J.R., & Gardea-Torresdey, J.L. (2013). Toxicity assessment of cerium oxide nanoparticles in cilantro (Coriandrum sativum L.) plants grown in organic soil. Journal of agricultural and food chemistry, 61(26), 6224-6230.
Mukherjee, A., Pokhrel, S., Bandyopadhyay, S., Mädler, L., Peralta-Videa, J.R., & Gardea-Torresdey, J.L. (2014). A soil mediated phyto-toxicological study of iron doped zinc oxide nanoparticles (Fe@ ZnO) in green peas (Pisum sativum L.). Chemical Engineering Journal, 258, 394-401.
Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and cell physiology, 22(5): 867-880.
Och, A., Olech, M., Bąk, K., Kanak, S., Cwener, A., Cieśla, M., & Nowak, R. (2023). Evaluation of the antioxidant and anti-lipoxygenase activity of Berberis vulgaris L. leaves, fruits, and stem and their LC MS/MS polyphenolic profile. Antioxidants, 12(7), 1467.
Pavani, K. V., Beulah, M., & Sai Poojitha, G. U. (2020). The effect of zinc oxide nanoparticles (ZnO NPs) on Vigna mungo L. seedling growth and antioxidant activity. Nanoscience & Nanotechnology-Asia, 10(2), 117-122.
Prasad, A.R., Williams, L., Garvasis, J., Shamsheera, K.O., Basheer, S. M., Kuruvilla, M., & Joseph, A. (2021). Applications of phytogenic ZnO nanoparticles: A review on recent advancements. Journal of Molecular Liquids, 331, 115805.
Rahimi-Madiseh, M., Lorigoini, Z., Zamani-Gharaghoshi, H., & Rafieian-Kopaei, M. (2017). Berberis vulgaris: specifications and traditional uses. Iranian Journal of Basic Medical Sciences, 20(5), 569. [In Persian]
Rico, C. M., Morales, M. I., McCreary, R., Castillo-Michel, H., Barrios, A. C., Hong, J., & Gardea-Torresdey, J.L. (2013). Cerium oxide nanoparticles modify the antioxidative stress enzyme activities and macromolecule composition in rice seedlings. Environmental science & technology, 47(24), 14110-14118.
Rivero-Montejo, S.D.J., Vargas-Hernandez, M., & Torres-Pacheco, I. (2021). Nanoparticles as novel elicitors to improve bioactive compounds in plants. Agriculture, 11(2), 134.
Santás-Miguel, V., Arias-Estévez, M., Rodríguez-Seijo, A., & Arenas-Lago, D. (2023). Use of metal nanoparticles in agriculture. A review on the effects on plant germination. Environmental Pollution, 122222.
Singh, A., Hussain, I., Singh, N.B., & Singh, H. (2019). Uptake, translocation and impact of green synthesized nanoceria on growth and antioxidant enzymes activity of Solanum lycopersicum L. Ecotoxicology and environmental safety, 182: 109410.
Upadhyaya, D., Sankhla, T.D., Davis, N., Sankhla, B.N., & Smith, J. (1985). Effect of Paclobutrazol on the Activities of Some Enzymes of Activated Oxygen Metabolism and Lipid Peroxidation in Senescing Soybean Leaves. Plant Physiology, 121: 453-461.
Venkatachalam, P., Jayaraj, M., Manikandan, R., Geetha, N., Rene, E.R., Sharma, N.C., & Sahi, S.V. (2017). Zinc oxide nanoparticles (ZnONPs) alleviate heavy metal-induced toxicity in Leucaena leucocephala seedlings: a physiochemical analysis. Plant Physiology and Biochemistry, 110: 59-69.
Vojodimehrabani, L., Valizadeh Kamran, R., & Hassanpour Aghdam, M.B. (2019). Evaluation of Some Phytochemical Characteristics of Berberis integerrima in Response to Nano-Zinc Foliar Application and Post-Harvest Drying Temperature. Plant Productions, 42(3), 345-358. [In Persian]
Wang, X.P., Li, Q.Q., Pei, Z.M., & Wang, S.C. (2018). Effects of zinc oxide nanoparticles on the growth, photosynthetic traits, and antioxidative enzymes in tomato plants. Biologia plantarum, 62, 801-808.
Wenchao, D., Rong, J., Ying, Y., Jianguo, Z., & Hongyan, G. (2015). Physiological and Biochemical Changes Imposed by CeO2 Nanoparticles on Wheat: A Life Cycle Field Study.
Wu, M., Wang, P.Y., Sun, L.G., Zhang, J.J., Yu, J., Wang, Y.W., & Chen, G.X. (2014). Alleviation of cadmium toxicity by cerium in rice seedlings is related to improved photosynthesis, elevated antioxidant enzymes and decreased oxidative stress. Plant growth regulation, 74, 251-260.
Yadghari, R., Nyakan, M., & Mosavat, A. (2014). The effect of nano and non-nano forms chelate zinc on growth, chlorophyll content and soluble sugar pea plants (Cicer arietinum L.) in different levels of salinity. Iranian Journal of Plant Ecophysiology Research, 9, 137-150. [In Persian]