نوع مقاله : علمی پژوهشی - تنش محیطی یا زیستی

نویسندگان

1 دانش آموخته دکتری علوم باغبانی، دانشکده تولید گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، ایران

2 دانشیار، گروه علوم باغبانی، دانشکده تولید گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، ایران

3 دانشیار، مرکز تحقیقات کشاورزی و منابع طبیعی استان سمنان (شاهرود)، ایستگاه تحقیقات پسته دامغان، ایران

4 دانشیار، گروه علوم باغبانی، پردیس ابوریحان، دانشگاه تهران، ایران

چکیده

فرآیندهای به نژادی از جمله تلاقی­ های هدفمند در جهت افزایش میزان تحمل، می­ تواند راهکاری مطمئن و دائمی برای کم ­کردن اثرات زیان­ بار تنش خشکی بر گیاهان در نظر گرفته شود. بنابراین با توجه به اهمیت محصول پسته در کشور به­ عنوان یک محصول استراتژیک و همچنین قرار گرفتن ایران در شرایط خشک و نیمه­ خشک، تحقیقات به­ منظور دستیابی به پایه ­های هیبرید  متحمل به خشکی ضروری می­ باشد. آزمایش نخست به ­صورت گلدانی و آزمایش دوم به­ منظور اندازه­ گیری اسمولیت­ های آلی به­ صورت فاکتوریل در قالب طرح کاملاً تصادفی با چهار تکرار به ترتیب در گلخانه و آزمایشگاه تحقیقاتی دانشگاه علوم کشاورزی و منابع طبیعی گرگان در طی سال­ های 1398- 1397 به اجرا در آمدند. تیمارهای آزمایش شامل 10 ژنوتیپ پسته احمد­آقایی، اکبری، سرخه ­حسینی، گرمه، فندقی و هیبرید بین­ گونه­ ای (احمد­آقایی­× اینتگریما، اکبری­× اینتگریما، سرخه ­حسینی × اینتگریما، گرمه × اینتگریما و فندقی × اینتگریما­) و سه سطح خشکی شامل شاهد (ظرفیت­ زراعی)، تنش ملایم (65 درصد ظرفیت ­زراعی) و تنش­شدید (30 درصد ظرفیت ­زراعی) بودند که 84 روز روی دانهال­ های سه ماهه پسته اعمال شدند. با افزایش سطوح خشکی، غلظت پرولین، گلایسین­ بتائین، کربوهیدارات­ های محلول کل (TSC)، فنل و مالون­ دی ­آلدهید (MDA) در برگ ژنوتیپ های مورد مطالعه افزایش معنی­ داری یافتند. ژنوتیپ فندقی بیش­ترین غلظت مالون­ دی ­آلدهید (23/280 درصد) و ژنوتیپ­ های هیبرید سرخه­ حسینی­× اینتگریما، احمد­آقایی × اینتگریما و اکبری­× اینتگریما به ترتیب با میزان 18/70، 70/76، 03/81 درصد کم­ترین افزایش را در خصوص غلظت مالون­ دی­ آلدهید برگ بین دانهال­ ها نسبت به شاهد نشان دادند. پایه ­های دانهالی واکنش ­های متفاوتی به تنش خشکی نشان دادند به­ طوری­که متحمل­ ترین آن­ها به ترتیب پایه ­های دورگه سرخه ­حسینی × اینتگریما، احمد­آقایی × اینتگریما و اکبری × اینتگریما بود. بنابراین بر اساس نتایج پژوهش حاضر به نظر می­ رسد بتوان از پایه­ های مورد نظر به­ عنوان ژنوتیپ ­های متحمل به خشکی در مناطق خشک استفاده کرد. 

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Effect of drought stress on the amount of proline, glycine betaine, carbohydrate, phenol and malondialdehyde content genotypes and interspecific hybrids pistachio (Pistacia vera L.)

نویسندگان [English]

  • Hassan Farhadi 1
  • Mohammad Mehdi ُSharifani 2
  • Mahdi Alizadeh 2
  • Hossein Hokmabadi 3
  • Sasan aliniaefard 4

1 Ph.D. Department. of Horticultural Science, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

2 Associate Professor, Department of Horticultural Science, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Iran

3 Associate Professor, Pistachio Research Center, Agricultural Research Education and Extention Organization of Semnan Province, Dameghan, Iran

4 Associate Professor, Department of Horticulture, College of Aburaihan, University of Tehran, Pakdasht, Tehran, Iran

چکیده [English]

Introduction
Cross breeding processes including targeted crossings to increase drought tolerance, can be considered as a safe and permanent solution to reduce the harmful effects of drought stress on plants. Therefore, two issues of pistachio as a strategic crop in the country and location of Iran in arid and semi-arid region necessitated research in order to achieve rootstocks drought-tolerant hybrids are necessary.
 
Materials and methods
The experiment was conducted as factorial based on a Completely Randomized Design with four replications in the research greenhouse of Gorgan University of Agricultural Sciences and Natural Resources during 2018-2019. The treatments were consisted of 10 pistachio genotypes Ahmad Aghaei, Akbari, Sorkheh Hosseini, Garmeh, Fandoghi and interspecific hybrids (Ahmad Aghaei­×Integerrima, Akbari­×Integerrima, Sorkheh­ Hosseini­× Integerrima, Garmeh­×­Iintegerrima and Fandoghi­×­Integerrima) and three levels of drought including control (field capacity), mild stress (65% of field capacity) and Severe stress (30% of field capacity) were applied on 3 months old the seedlings for 84 days.
 
Results and Discussion
According to the results, fandoghi genotype showed a higher malondialdehyde concentration in leaves (280.23 %), while the hybrid genotypes of Sorkheh Hosseini­×­Integerrima, Ahmad Aghaei­×Integerrima and Akbari­× Integerrima showed a lower malondialdehyde concentration in leaves by 70.18, 76.70, 81.03 % respectively compared to the control. Several osmotic mechanisms are carried out by plants, especially pistachios, in stressful conditions to reduce the effects of drought stress. In fact, these mechanisms have enabled plants to withstand the damages caused by drought and have made plants able to recover their biochemical and physiological functions faster after removing the stress factor. For example, a general physiological mechanism adopted by plants to cope with abiotic stresses is the production of large amounts of low molecular weight, water-soluble, non-toxic organic compounds even in high amounts called osmolytes. One of the most important of them is proline. Therefore, the genotypes with higher amount of proline can be more tolerant to drought conditions. The next osmolyte is glycine betaine, which has a significant protective role in the stability of enzymes and the structure of plasma membranes when faced with drought stress. Therefore, glycine betaine plays a significant role in the resistance of plants to stress through the protection of enzymes, the photosynthetic apparatus, the elimination of free radicals, the preservation of membrane integrity, the protection of large molecules, and as a non-toxic compatible osmolyte. It has an environment. Carbohydrates also increase membrane stability in response to drought stress. Therefore, the accumulation of carbohydrates in the osmotic responses of plants is one of the factors that can prevent disorders in the cell membrane. In addition, phenols are also one of the antioxidant mechanisms of plants in drought stress conditions, because such compounds act as scavengers of reactive oxygen species and thus stabilize membrane, cells and prevent lipid peroxidation. Malondialdehyde is also a decomposition product of unsaturated fatty acids and hydroxides and is used as a suitable marker for lipid peroxide. Therefore, the amount of malondialdehyde obtained from the peroxidation of membrane lipids is used as an indicator for oxidative damage in most cases.
Conclusion
Based on the results of the present research, it seems that it is possible to use the hybrids of Sorkhe Hosseini × Integerrima, Ahmad Aghaei­ ×­ Integerrima, and Akbari­× ­Integerrima as drought-tolerant genotypes in dry areas. Therefore, based on the results of the present research, it seems that the plants in question can be used as drought tolerant genotypes in arid regions.

کلیدواژه‌ها [English]

  • Compatible osmolytes
  • Controlled crosses
  • Drought tolerance
  • Field capacity
Abid, M., Ali, S., Qi, L. K., Zahoor, R., Tian, Z., Jiang, D., Snider, J. L., & Dai, T. (2018). Physiological and biochemical changes during drought and recovery periods at tillering and jointing stages in wheat (Triticum aestivum L.), Journal of Scientific Reports. 8 (1), 1–15.
Amini, S., Ghobadi, C., & Yamchi, A. (2015). Proline accumulation and osmotic stress: an overview of P5CS gene in plants, Journal of Plant Molecular Breeding. 3(2), 44-55. [In Persian].
Antoniou, C., Chatzimichail, G., Xenofontos, R., Pavlou, J., Panagiotou, E., Christou, A., & Fotopoulos, V. (2017). Melatonin systemically ameliorates drought stress-induced damage in Medicago sativa plants by modulating nitro-oxidative homeostasis and proline metabolism, Journal of Pineal Research. 62 (4), e12401.
Arakawa, K., Katayama, M., & Takabe, T. (1990). Levels of betaine and betaine aldehyde dehydrogenase activity in the green leaves, and etiolated leaves and roots of barley, Journal  of Plant and Cell Physiology. 31 (6), 797–803.
Araus, J. L., Casadesus, J., Bort, J., Nachit, M. M., Villegas, D., Aparicio, N., & Royo, C. (2000). Some remarks on ecophysiological traits for breeding, Journal of Ciheam -Options Mediterranneenes. 40, 57-62.
Ashraf, M. V., & Foolad, M. R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance, Journal of Environmental & Experimental Botany. 59, 206–216.
Barrs,  H. D., &  Weaterley, P. E. (1962). A re-examination of the relative turgidity techniques for the estimating water deficit in leaves, Australian Journal of Biological Sciences. 15, 413-428.
Blum, A. (2017). Osmotic adjustment is a prime drought stress adaptive engine in support of plant production, Journal of Plant Cell and Environment. 40 (1), 4–10.
Chang, C. C., Yang, M. H., Wen, H. M., & Chern, J. C. (2002). Estimation of total flavonoid content in propolis by two complementary colorimetric methods, Journal of Food & Drug Analysis. 10, 178-182.
Chegah, S., Chehrazi, M., & Albaji, M. (2013). Effects of drought stress on growth and development frankinia plant (Frankinia leavis). Bulgar, Journal of Agricultural Science. 19, 659–665.
Dias, M. C., Correia, S., Serodio, J., Silva, S., Freitas, H., & Santos, C. (2018). Chlorophyll fluorescence and oxidative stress endpoints to discriminate olive cultivars tolerance to drought & heat episodes, Journal of Horticultural Science. 231, 31–35.
Fahimi Khoyerdi, F., Shamshiri, M. H., & Estaji, A. (2016). Changes in some physiological and osmotic parameters of several pistachio genotypes under drought stress, Journal of Scientia Horticulturae. 198, 44- 51.
Fattahi, M., Mohammadkhani, A., Shiran, B., Baninasab, B., & Ravash, R. (2022). Investigation of phosphorus use efficiency and drought and salinity stress resistance index in pistachio rootctocks coexisted with mycorrhiza, Journal of Plant Productions. 44(4), 587-600. [In Persian].
Fu, J., & Huang, B. (2001). Involvement of antioxidants and lipid peroxidation in the adaptation of two cool-season grasses to localized drought stress, Journal of Environmental & Experimental Botany. 45 (2), 105–114.
Giri, J. (2011). Glycinebetaine and abiotic stress tolerance in plants, Journal of Plant Signal &  Behavior. 6, 1746-1751.
Goodarzian Ghahfarokhi, M., Mansurifar, S., Taghizadeh-Mehrjardi, R., Saeidi, M., Jamshidi, A. M., & Ghasemi, E. (2015). Effects of drought stress and rewatering on an tioxidant systems & relative water content in different growth stages of maize (Zea mays L.) hybrids, Journal of Archives of Agronomy and Soil Science. 61 (4), 493–506. [In Persian].
Gupta, S. D., Singh, M. A., Singh, P., & Kewat, R. N. (2018). Effect of drought stress on carbohydrate content in drought tolerant & susceptible chickpea genotypes, International Journal of Chemistry Studies. 6 (2), 1674–1676.
Irrigoyen, J. H., Emerich, D. W., & Sanchez Diaz, M. (1992). Water stress induced changes in concentration of proline and total soluble sugars in nodulated alfalfa (Medicago sativa L.) plants, Journal of Plant Physiology. 84, 55-66.
Isfendiyaroglu, M., & Zeker, E. (2002). The relation between phenolic compound and seed dormancy in pistachios and almond, Journal  of Chieres Optins Mediterrsneenes. 232-277.
Keunen, E., Peshev, D., Vangronseld, J., Van Den Ende, W., & Cuypers, A. (2013). Plant sugars are crucial players in the oxidative challenge during abiotic stress: extending the traditional concept, Journal of Plant Cell and Physiology. 36, 1242–1255.
Khan, M., & Panda, S. (2002). Induction of oxidative stress in roots of Oryza sativa L. in response to salt stress, Journal of Biologia Plantarum. 45, 625-627.
Lei, S., Zeng, B., Yuan, Z., & Su, X. (2014). Changes in carbohydrate content and membrane stability of two ecotypes of Calamagrostis arundinacea growing at different elevations in the drawdown zone of the three Gorges Reservoir, Journal of Plos One. 9 (3), 1–6.
Mayne, S. T. (2013). Oxidative stress, dietary antioxidant supplements, and health: Is the Glass Half Full or Half Empty? Journal of Cancer Epidemiology Biomarkers & Prevention. 22, 2145-2147.
Metwally, A. S., Khalid, A. K., & Abou-Leila, B. H. (2013). Effect of water regime on the growth, flower yield, essential oil and proline contents of Calendula officinalis, Journal of Science and Technology. 5, 65–69.
Omena-Garcia, R. P., Martins, A. O., Medeiros, D. B., Vallarino, J. G., Ribeiro, D. M., Fernie, A. R. L., Araujo, W., & Nunes-Nesi, A. (2019). Growth and metabolic adjustments in response to gibberellin deficiency in drought stressed tomato plants, Journal of Environmental & Experimental Botany. 159, 95–107.
Paquin, R., & Lechasseur, P. (1979). Observation ssurune methode de dosage dela  proline libre dans les extraits de plantes, Canadian Journal of Botany. 57, 1851-1854.
Shamili, M., Fattahi Moghaddam, M. R., & Talaei, A. R. (2013). Investigating the effect of pollen grains on fruit formation and its quality in mango (Mangifera indica). Journal of Plant Productions, 36(2), 1-12. [In Persian].
Sakihama, Y., Cohen, M. F., Grace, S. C., & Yamasaki, H. (2002). Plant phenolic antioxidant and prooxidant activities: phenolics-induced oxidative damage mediated by metals in plants, Journal of Tixicology. 177, 67-80.
Sedaghati, N., Sheibani Tazarji, Z., Tajabadi, A., Hokmabadi, H., Haq Del, M., & Abdollahi Ezzatabadi, M. (2009). Guide to pistachio production (planting, holding and harvesting). Second Edition, Agricultural Education and Extension Publications, Tehran. 563 p. [In Persian].
Shehab, G. G., Ahmad, O. K., & EL- Beltagi, H. S. (2010). Effects of various chemical agents for alleviation of drought stress in rice plants, Journal of Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 38(1), 130-148.
Shibairo, S. I., Upadhyaya, M. K., & Toivonen, P. M. A. (1998). Influence of preharvest water stress on postharvest moisture loss of carrot (Daucus carota L.), Journal of Horticultural Science and Biotechnology. 73, 347- 352.
Smirnoff, N. (2008). Antioxidants and reactive oxygen species in plants, Journal of Plant Biochemistry. 1-320.
Verslues, P. E., & Sharma, S. (2010). Proline metabolism and its implications for plant-environment interaction, The Arabidopsis Book. 8, 1-23.
Yang, X., & Lu, C. (2005). Photosynthesis is improved by exogenous glycinebetaine in salt- stressed maize plants, Journal of Physiologia Plantarum. 124, 343-352.
Zhao, D. Y., Shen, L., Fan, B., Liu, K. L., Yu, M. M., Zheng, Y., Ding, Y., & Sheng, J. P. (2009). Physiological and genetic properties of tomato fruits from 2 cultivars differing in chilling toleranceat cold storage, Journal of Food Science. 74, 348–352.
Uddin, G., Rauf, A., Rehman, T., & Qaisar, M. (2011). “Phytochemical Screening of Pistacia chinensis var. integerrima”, Middle-East Journal of Scientific Research. 5, 707-711.