نوع مقاله : علمی پژوهشی - اکولوژی گیاهان زراعی

نویسندگان

1 دانشجوی دکتری اگروتکنولوژی، گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه لرستان، خرم آباد، ایران

2 استاد، گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه لرستان، خرم آباد، ایران

3 استادیار، گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه لرستان، خرم آباد، ایران

4 دانشیار، بخش تحقیقات اصلاح و تهیه نهال و بذر، مرکز تحقیقات کشاورزی و منابع طبیعی استان آذربایجان غربی، سازمان تحقیقات، آموزش و ترویج کشاورزی، ارومیه، ایران

چکیده

مدل ­های شبیه ­سازی­ رشد گیاهان زراعی امکان مطالعه تأثیر مدیریت کشاورزی بر فعالیت­ های تولیدی در محیط­ های معین را مهیا می­ سازند. مدل­ ها مکانیستیک و فرآیندگرا می­ باشند که با به کارگیری زیرمدل­ های مختلف (زیرمدل­ های بیولوژیک، محیطی، مدیریتی و اقتصادی) که با موتور اصلی مدل مرتبط می ­شوند قادر به شبیه­ سازی سیستم ­های کشاورزی در مناطق مختلف از جمله نواحی خشک و نیمه­ خشک مانند ایران می ­باشند. مدل  APSIM-Barley می­ تواند جهت ارزیابی مدیریت در محصول جو مورد استفاده قرار گیرد. هدف این مطالعه بررسی و ارزیابی مدل APSIM-Barley در رابطه با شبیه سازی رشد، نمو و عملکرد سه رقم جو آذران، جلگه و بهمن، تحت شرایط مختلف فراهمی نیتروژن و آبیاری بود. به منظور ارزیابی مدل APSIM-Barley در راستای شبیه ­سازی و کمی­ سازی مراحل رشد فنولوژیک، زیست توده و عملکرد دانه ارقام مختلف جو از یک­ سری آزمایش مستقل استفاده شد. به منظور واسنجی­ مدل زراعی، آزمایشی به صورت اسپلیت پلات فاکتوریل در قالب طرح بلوک­ های کامل ­تصادفی در مزرعه تحقیقاتی مرکز تحقیقات کشاورزی واقع در شهر همدان در سال 1398 انجام شد. در طرح مذکور سطوح مختلف آبیاری، نیتروژن و رقم مورد بررسی قرار گرفت.  فاکتور اصلی شامل سه سطح آبیاری (40-30، 70-60 و 100-90 درصد ظرفیت مزرعه) و فاکتورهای فرعی شامل سطوح رقم (آذران، جلگه و بهمن به ترتیب ارقام زودرس، متوسط­رس و دیررس) و نیتروژن (سه سطح صفر، متوسط و بهینه) بودند. برای اعتبار­سنجی و واسنجی مدل از یکسری مجموعه داده مستقل دیگر در سال های مختلف شامل مقالات چاپ شده و همچنین گزارش نهایی طرح های تحقیقاتی انجام شده استفاده شد. برای ارزیابی کارایی مدل زراعی و مقایسه مقدارهای شبیه­ سازی و اندازه­ گیری شده از شاخص­ های آماری شامل ضریب تبیین، ریشه میانگین مربعات خطا نرمال شده، شاخص توافق و میانگین انحراف خطا استفاده شد. در­ این ­تحقیق برای تمامی تجزیه­ های آماری و­ رسم شکل­ ها از نرم ­افزار  OriginPro استفاده شد. یافته های حاصل از شبیه ­سازی توسط مدل APSIM-Barley در مرحله واسنجی نشان داد که مقدار ریشه میانگین مربعات خطای نرمال شده در رابطه با پیش بینی مراحل  فنولوژی گیاه (روز تا گلدهی و رسیدگی فیزیولوژیک) به ترتیب برابر 43/2 و 4/2 درصد بود. همچنین دقت مدل برای شاخص سطح برگ­ برای ارقام آذران، جلگه و بهمن تحت شرایط تیمار مصرف کامل آب و نیتروژن به ترتیب 5/13، 1/14 و 7/10 درصد و تحت شرایط تیمار تنش شدید آب و نیتروژن به ترتیب 5/16، 6/18 و 5/26 درصد بود. در این مرحله مقادیر ریشه میانگین مربعات خطای نرمال شده و شاخص توافق برای عملکرد زیست توده و دانه برابر 9/24 درصد و 98/0و 2/15 درصد و 96/0 بود. در مرحله اعتبار­­سنجی مدل زراعی، مقادیر شاخص های ریشه میانگین مربعات خطای نرمال شده، شاخص توافق، ضریب تبیین و میانگین انحراف خطا به ترتیب برای عملکرد دانه 02/15درصد، 96/0، 82/0 و 34/0 تن در هکتار بود. به طور کلی نتایج نشان داد که مدل  APSIM-Barley قادر است رشد، نمو و عملکرد دانه ارقام مختلف جو را با دقت قابل قبولی تحت شرایط مختلف مدیریت آب و نیتروژن در سال­ ها و مناطق مختلف شبیه ­سازی کند. بنابراین مدل مذکور می تواند به عنوان ابزاری قابل اعتماد در مطالعات آینده در زمینه ارزیابی تغییر اقلیم، آنالیز خلاء عملکرد، پهنه بندی و غیره مورد استفاده قرارگیرد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Evaluating APSIM-Barley model for different barley cultivars under water and nitrogen stresses

نویسندگان [English]

  • Hassan Shahbazi 1
  • khosro Azizi 2
  • Sajjad Rahimi-Moghaddam 3
  • Solieman Mohamadi 4
  • Naser Akbari 3

1 Ph.D Student of Agrotechnology, Department of Production Engineering and Plant Genetic, Faculty of Agricalture, Lorestan University, Khorramabad, Iran

2 Professor, Department of Production Engineering and Plant Genetic, Faculty of Agriculture, Lorestan University, Khorramabad, Iran

3 Assistant Professor, Department of Production Engineering and Plant Genetic, Faculty of Agriculture, Lorestan University, Khorramabad, Iran

4 Associate Professor, Seed and Plant Improvement Research Department, West Azerbaijan Agricultural and Natural Research Center, AREEO, Ormia, Iran

چکیده [English]

Introduction
 Background: Crop simulation models provide the possibility to study the effect of agronomic management practices on agricultural production activities in a given location. The models are mechanistic and process-oriented that are able to simulate different agricultural systems (including arid and semi-arid areas such as Iran) through different sub-models (biological, environmental, managerial, and economic sub-models) connected with the main engine of the models. The APSIM-Barley model can be used to evaluate the management practices on barley crop. The current research was carried out to evaluate the APSIM-Barley model in relation to simulating the growth, development, and yield of three barley cultivars (Azaran, Jolgeh, and Bahman) under different conditions of nitrogen and irrigation supplies.
 Materials and methods
 In order to evaluate the APSIM-Barley model regarding simulating and quantifying the phenological stages, biomass, and grain yield of different barley cultivars, some independent experiment datasets were used. For crop model calibration, an experiment was conducted in a factorial split plot design at the Agricultural Research Center of Hamedan in 2019. The main factor consisted of three irrigation levels (30-40, 60-70, and 90-100% of the field capacity) and sub-factors included cultivar levels (Azran, Jolgeh, and Bahman as early, mid, and late cultivars, respectively) and three nitrogen levels (zero, medium, and optimum). For model validation, another series of independent datasets in different years consisting of published articles and research projects were used. For assessing the efficiency of the crop model and comparing the simulated and measured values, R2, nRMSE, d-index, and MBE indices were used and OriginPro software was considerd for all statistical analysis and drawing of figures.
Results and Discussion
 The simulation results of APSIM-Barley model in the calibration step showed that nRMSE for days to flowering and maturity was 2.43 and 2.4%, respectively.  Also, under full water and nitrogen conditions, nRMSE for the leaf area index of Azaran, Jolgeh and Bahman cultivars was 13.5, 14.1, and 10.7%, respectively, and under severe water and nitrogen stresses, it was 16.5, 18.6, and 26.5% respectively. At this step, and nRMSE and d-index for biomass and grain yield were 24.9% and 0.98 and 15.2% and 0.96, respectively.  In model validation step, nRMSE, d-index, R2, MBE were 15.02%, 0.96, 0.82 and 0.34 t ha-1, respectively, for grain yield.
 Conclusion
In general, the results showed that the APSIM-Barley model was able to simulate the growth, development, and grain yield of different barley cultivars with acceptable accuracy under different water and nitrogen management conditions in different years and regions. Therefore, the APSIM-Barley model can be used as a reliable tool in future studies such as climate change assessment, yield gap analysis, agricultural zoning, and etc. by other researchers.
.

کلیدواژه‌ها [English]

  • Biomass
  • Days to flowering
  • Leaf area index
  • Modeling
Amjed, A., Sanjani, S., Hoogenboom, G., Ahmad, A., Khaliq, T., Wajid, S., Noorka, I., & Ahmad, S. (2012). Application of crop growth models in agriculture of developing countries: a review. New Horizons Science Technol, 1, 95-99.
Araya, A., Hoogenboom, G., Luedeling, E., Hadgue, K.M., Kisekkaf, I., & Martorano, L.G. (2015). Assessment of maize growth and yield using crop models underpresent and future climate in southwestern Ethiopia.  Agricultural and forest Meteorol, 214, 252-265.
Archontoulis, S.V., Miguez, F.E., & Moore, K.J. (2014). Evaluating APSIM maize, soil water, soil nitrogen, manure, and soil temperature modules in the Midwestern United States. Agronomy Journal, 106(3), 1025-1040.
Beah, A., Kamara, A . Y., Jibrin, J . M., Akinseye, F. M., Tofa, A . I. & Adam, A . M .(2021).Simulating the Response of Drought–Tolerant Maize Varieties to Nitrogen Application in Contrasting Environments in the Nigeria Savannas Using the APSIM Model. Agronomy MDPI, 11-76.
Brisson, N., Gary, C., Justes, E., Roche, R., Mary, B., Ripoche, D., Zimmer, D., Sierra, J., Bertuzzi, P., Burger, P., Bussiere, F., Cabidoche, Y.M., Cellier, P., Debaeke, P., Gaudillere, J.P., Henault, C., Maraux, F., Seguin, B., & Sinoquet, H. 2003. An overview of the crop model STICS. Europ. Journal Agronomy, 18, 309– 332.
Clark, L. (1997). "Grain sorghum production in the Texas Rolling Plains." Vernon Research Center Technical Report: 97-91.
Deihimfard, R., Rahimimoghaddam, S. & Chenu, K . (2019). Risk assessment of frost damageto sugar beet simulated under cold and semi-arid environments. International journal of Biometeorol, 63(4), 511-521.
Dwyer, L.M., Evanson, L. & Hamilton, R.I. (2003). Maize physiological traits related to grain yield and harvest moisture in mid-toshortseason environments. Crop Science, 34, 985-992.
FAOSTAT, (2019). Available online: http://www.fao.org/faostat/en/#home (accessed on 1 November 2021) .
Ghaderi, K., Mohammadi, S., Dadashi, M. & Majidi, A.(2018).The response of barley genotypes (Hordeum vulgare L.) to different levels of nitrogen fertilizer application under normal irrigation conditions and drought stress. Enviromental stresses in crop Sciences, 13(1), 73-84.
Habibi, H. Niknezhad, Y. Fallah, H . Dastan, S. & Barari Tari .(2020) . Estimation of Yield Gap of Rice by Comparative Performance Analysis (CPA) in Amol and Rasht Regions.Plant Prodaction .42(4), 551-562.                                                                 
Hammer, G.L., Van Oosterom, E., McLean, G., Chapman, S.C., Broad, I., Harland, P., & Muchow, R.C. (2010). Adapting APSIM to model the physiology and genetics of complex adaptive traits in field crops. Journal of Experimental­ Botany, 61(8), 2185–2202.
Holzworth, D. P., Huth, N . I., Dvoil, P .G., Zurcher, E . G., Herrmann, N . I., Mclean, G., Chenu, K., Voonstrom, E., Snow, V., Murphy, C., Moore, A . D., Brown, H., Wish, J . P., Verral, S., Fainges, J., Bell, L . W., Peake, A . S., Poulton, P . L & Keating, B . A . (2014). "APSIM–evolution towards a new generation of agricultural systems simulation." Environmental Modelling & Software, 62, 327-350.
Hosseinpanahi,F., Kafi, M. Parsa, M. Nasir iMahalati, M. & Banayanaval, M. (2013). valuation of a model for simulating growth and development of wheat (Triticum aestivum L.) under drought stress conditions.Gorgan, Iran. Journal Field Crops Reserch, 12(3), 387-402.
Ibrahim, A., Harrison, M.T., Meinke, H. & Zhou, M., (2019). Examining the yield potential of barley near-isogenic lines using a genotype by environment by management analysis. European Journal of Agronomy, 105, pp.41-51.
Jamieson, P., Semenov, M., Brooking, I. and Fransic, G . (1998). "Sirius: a mechanistic model of wheat response to environmental variation. European Journal of Agronomy, (3-4), 161-179.
Keating, B.A., Carberry, P.S., Hammer, G.L., Probert, M.E., Robertson, M.J., Holzworth, D., Huth, N.I., Hargreaves, J.N.G., Meinke, H., Hochman, Z., McLean, G., Verburg, K., Snow, V., Dimes, J.P., Silburn, M., Wang, E., Brown, S., Bristow, K.L., Asseng, S., Chapman, S., McCown, R.L., Freebairn, D.M., & Smith, C.J. (2003). An overview of APSIM, a model designed for farming systems simulation. Europ. Journal Agronomy, 18, 267– 288.
Keshavarzmehr,M. Mogaddam, H.Oveisi, M. & Bazrafshan, J. (2020). Parameterization and Evaluation of APSIM-Wheat Model for Winter Wheat: Model Application under Climate Chang. Tehran, Journal. Behzeraee, 23(1), 43-58[In Persian]
Kpongor, D., S. (2007). Spatially explicit modeling of sorghum (Sorghum bicolor (L.) Moench) production on complex terrain of a semi-arid region in Ghana using APSIM, Universitäts-und Landesbibliothek Bonn.
Mahru, A.H., Soltani, A., Galeshi, S., & Kalate-Arabi, M. (2010). Estimates of genetic coefficients and evaluation of DSSAT model for Golestan province. Electronic journal of crop production, 3(2), 229-253. [In Persian]
Makowski, D., Naud, C., Jeffroy, M.H., Barbttin, A., & Monod, H. (2006). Global sensitivity analysis for calculating the contribution of genetic parameters to the variance of crop model prediction. Reliability Engineering & System Safety, 91, 1142- 1147.
Mendenhall, W., Sincich, T., & Boudreau, N.S. (1996). A second course in statistics: regression analysis. Prentice Hall Upper Saddle River, New Jersey.
Mesfin, T., Moeller, C., Parsons, D., & Meinke, H. (2015). Maize (Zea mays L.) productivity as influenced by sowing date and nitrogen fertiliser rate at Melkassa, Ethiopia: parameterisation and evaluation of APSIM-Maize.17nd Australian Society of Agronomy Conference. Hobart. Sep, 20- 24. 1- 4.
Ministry of Agriculture Jahad, (2019). Final report of planting maize in (2020). with province separation. Agronomy Department, MoJA, Iran. [In Persian]
Paknejad, F., Moayeri por, S., Aghayari, F & Nabi Ilkaei, M. (2017). Simulation of maize yield with different levels of nitrogen by using DSSAT model. Journal of crop Ecophysiology, 43, 503-518. [In Persian]
Rahimi-Moghaddam, s. and Eyni-Nargeseh, H. (2022). Identification of different drought patterns of dryland wheat in the northwest of Iran by APSIM model. Plant Productions,45(3),435-466. [In Persian]
Rahimi Moghaddam, S., Deihimfard, R., Soufizadeh, S., Kambouzia, J., Nazariyan Firuzabadi, F., & Eyni Nargeseh, H. (2015b). Determination of genetic coefficients of some maize (Zea mays L.) cultivars of Iran for application in crop simulation models. Iran. Journal. Field Crops Reserch, 13(2), 328-339 [In Persian]
Rahimi-Moghaddam, S., Kambouzia, J. & Deihimfard, R . (2019). Optimal genotype× environment× management as a strategy to increase grain maize productivity and water use efficiency   in water-limited environments and rising temperature. Ecological Indicators, 107, p.105570.
Rahimi-Moghaddam, S., Kambouzia, J., Deihimfard, R. 2018. Adaptation strategies to lessen negative impact of climate change on grain maize under hot climatic conditions: A model-based assessment. Agricultural and Forest Meteorology. 253, 1-14.
Román-Paoli, E.,Welch, S. M . &  Vanderlip, R.l .(2000). "Comparing genetic coefficient estimation methods using the CERES-Maize model." Agricultural Systems, 65(1), 29-41.
Sadeghi, H. & Kazemeini, A.(2011). Investigating the physiological characteristics of two barley cultivars and soil moisture percentage in response to the management of plant residues and nitrogen levels in rainfed conditions. Iranian Journal of Field Crops Research, 9(3), 544-556.
Seifert, E. (2014). OriginPro 9.1: Scientific Data Analysis and Graphing Software—Software Review. Journal of chemical information and modeling, 54(5), 1552–1552.
Soltani, A.,Tscharntke, T., Clough, Y., Wanger, T.C., Jackson, L., Motzke, I., Perfecto, I Vandermeer, J., & Whitbread, A. (2012). Modeling physiology of crop development, growth and yield. CABI.Wallingford. Global food security, biodiversity conservation and the future of agricultural intensification. Biol. Conserv. P :151, 53-59.
Sorkhi, B., Mohammadi, S., Teimorpoor, H., Tat, M.H., Komaili, H.R . (2018). Evaluation of compatibility of barley elite lines  in yield stability studies for drought at the end of the season in the cold region. Final report, No. 97/817. Seed and Plant Improvement Institute, Research Department, Karaj, Iran. [In Persian]
Wallach, D., & Goffinet, B. (1987). Mean squared error of prediction in models forstudying economic and agricultural systems. Biometrics, 43, 561–576.
Wang, E., Robertson, M.J., Hammer, G.L., Carberry, P.S., Holzworth, D., Meinke, H., Chapman, S.C., Hargreaves, J.N.G., Huth, N.I., & McLean, G. (2002). Development of a generic crop model template in the cropping system model APSIM. European Journal of Agronomy, 18(1), 121-140.
Willmott, C.J. (1982). Some comments on the evaluation of model performance. Bulletin of the American Meteorological Society, 63, 1309–1313.
Willmott, C.J. & Matsuura, K. (2005). Advantages of the mean absolute error (MAE) over theroot mean square error (RMSE) in assessing average model performance. Climate research, 30, 79–82.