نوع مقاله : علمی پژوهشی - اصلاح نباتات

نویسندگان

1 دانشیار مؤسسه تحقیقات اصلاح و تهیه بذر چغندرقند، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

2 دانشیار مؤسسه تحقیقات اصلاح و تهیه بذر چغندرقند- سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

3 مؤسسه تحقیقات اصلاح و تهیه بذر چغندرقند- سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران.

4 کارشناس پژوهشی (محقق غیر هیأت علمی) مؤسسه تحقیقات اصلاح و تهیه بذر چغندرقند، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

چکیده

روش‌هایی که برای تجزیه برهمکنش ژنوتیپ- محیط و تعیین پایداری و سازگاری ژنوتیپ‌ها مورد استفاده قرار می‌گیرند، به‌طور مداوم در حال تکامل می‌باشند تا ارزیابی ژنوتیپها و مطالعه مؤلفه‌های برهمکنش محیطی با دقت بیشتری صورت گیرد. در این مطالعه به بررسی برهمکنش ژنوتیپ- محیط با استفاده از روش AMMI و آماره‌های ارائه‌شده برای آن پرداخته شد. به این منظور، تعداد 25 ژنوتیپ چغندرقند متشکل از 18 هیبرید جدید، سه شاهد داخلی و چهار شاهد خارجی در هفت منطقه کرج، مشهد، شیراز، میاندوآب، کرمانشاه، همدان و خوی در قالب طرح بلوک‌های کامل تصادفی با چهار تکرار طی سال زراعی 1399-1398 کشت شدند. تجزیه واریانس مرکب مدل AMMI حاکی از معنی‌داری اثرات افزایشی محیط و ژنوتیپ و اثر ضرب‌پذیر ژنوتیپ- محیط در سطح احتمال یک درصد بود. تجزیه اثرات برهمکنش به مؤلفه‌های اصلی نشان داد که چهار مؤلفه اول در سطح احتمال یک درصد معنی‌دار بودند و مجموعاً 50/93 درصد از تغییرات مربوط به برهمکنش ژنوتیپ‌- محیط را تبیین نمودند. طبق بای‌پلات AMMI1، هیبرید‌های 3 و 9 به دلیل داشتن عملکرد شکر بالاتر از میانگین کل و مقدار پایین مؤلفه اول برهمکنش، تحت عنوان پایدارترین ژنوتیپ‌ها شناخته شدند. بر اساس بای‌پلات AMMI2، هیبرید 9 و پس از آن 6، 2، 8، 7 و 10 از سازگاری عمومی بالایی برخوردار بودند. شاخص SIIG محاسبه شده بر اساس آماره‌های مدل AMMI، هیبرید‌های 2، 9، 10 و 8 از نظر عملکرد شکر سفید پایدار و پرمحصول بودند. به‌طور کلی، بر اساس نتایج مطالعه حاضر، هیبرید 9 و پس از آن هیبریدهای 6، 2، 8، 7 و 10 عملکرد شکر سفید و پایداری عملکرد بالایی داشتند.
 

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Genotype- environment interaction analysis and selection of sugar beet stable genotypes in terms of white sugar yield using AMMI model

نویسندگان [English]

  • Dariush Taleghani 1
  • Abazar Rajabi 2
  • Ali Saremirad 3
  • shahram khodadadi 4

1 Associate Professor of Sugar Beet Seed Institute (SBSI), Agricultural Research Education and Extension, Karaj, Iran

2 Associate Professor of Sugar Beet Seed Institute (SBSI)- Agricultural Research Education and Extension, Karaj, Iran.

3 Sugar Beet Seed Institute (SBSI)- Agricultural Research Education and Extension, Karaj, Iran.

4 Expert of Sugar Beet Seed Institute (SBSI), Agricultural Research Education and Extension, Karaj, Iran

چکیده [English]

Introduction
The methods used to analyze genotype-environment interaction and determine the stability and adaptability of genotypes are continuously evolving to improve the accuracy of evaluating genotypes and studying environmental interaction components. Using a combination of several methods provides a more comprehensive understanding of the genotype-environment interaction from multiple dimensions. In this study, the genotype-environment interaction was investigated using the AMMI method, along with the development of appropriate statistical techniques.
 
Materials and Methods
For this purpose, 25 sugar beet genotypes, consisting of 18 new hybrids and seven controls, were cultivated in seven environments: Karaj, Mashhad, Shiraz, Miandoab, Kermanshah, Hamadan, and Khoi. The experiment followed a randomized complete block design with four replications during the year 2020. After checking the uniformity of the variance of the experimental errors using Bartlett's test, the stability of the genotypes was analyzed based on the AMMI model. In this study, 12 statistics obtained from the AMMI model, including ASTAB, ASI, ASV, AVAMGE, DA, DZ, EV, FA, MASI, MASV, SIPCi, and Za, were used to identify stable genotypes. To further investigate the stability of the experimental genotypes, the SIIG index was also estimated, taking into account the criteria provided by each index based on the AMMI model.
 
Results and Discussion
The results obtained from Bartlett's test confirmed the homogeneity of the variance of experimental errors in experiments from different regions. Therefore, a combined variance analysis was performed based on the AMMI model. The combined analysis of variance, based on the AMMI model, indicated the significance of the additive effects of the environment and genotype, as well as the multiplicative effect of genotype-environment interaction at the 1% probability level. Analyzing the interaction effects into principal components showed that the first four components were significant at the 1% probability level and explained 93.50% of the variations related to genotype-environment interaction. According to the AMMI1 biplot, hybrids 3 and 9 were recognized as the most stable genotypes due to having a sugar yield higher than the overall average and a low value of the first interaction component. According to the AMMI2 biplot, hybrid 3 and BTS 335 with the Miandoab environment, Lexia and 4 with the Mashhad environment, Lexia with the Hamedan environment, 14 and 15 with the Kermanshah environment, 13 and 17 with the Shiraz environment, 11 with the Karaj environment, and Baloo with the Khoi environment have considerable specific adaptability. Hybrid 9, followed by 6, 2, and 8, had general adaptability. The SIIG index, calculated based on AMMI model statistics, identified 2, 9, 10, and 8 as the most stable genotypes with optimal yield.
 
Conclusion
Based on the obtained results, the environment and its interaction with the genetic structure of different genotypes have played a significant role in the phenotypic expression of white sugar yield and have caused the genotypes to provide different responses in terms of white sugar yield according to the conditions of different environments. In general, based on the results of the present study, hybrid 9 and then hybrids 6, 2, 8, 7, and 10 had high white sugar yield and yield stability. Generally, real progress in sugar beet breeding will be obtained if the genetic factors controlling the sensitivity of sugar beet genotypes to a variable environment are identified.
 

کلیدواژه‌ها [English]

  • Adaptability
  • Additive effect
  • Biplot
  • Ideal genotype
  • Industrial crops
  • Stability
Abdollahi Hesar, A., Sofalian, O., Alizadeh, B., Asghari, A., & Zali, H. (2021). Investigation of Frost Stress Tolerance in Some Promising Rapeseed Genotypes. Journal of Agricultural Science and  Sustainable Production, 31, 271-288.
Ajay, B., Aravind, J., & Abdul Fiyaz, R. (2018). Ammistability: additive main effects and multiplicative interaction model stability parameters. R Package Version, 11.
Ajay, B., Bera, S., Singh, A., Kumar, N., Gangadhar, K., & Kona, P. (2020). Evaluation of genotype× environment interaction and yield stability analysis in peanut under phosphorus stress condition using stability parameters of AMMI model. Agricultural Research, 9, 477-486.
Amiri, R., Pezeshkpour, P., & Karami, I. (2021). Identification of Lentil Desirable Genotypes Using Multivariate Statistical Methods and Selection Index of Ideal Genotype under Rainfed Conditions. Journal of Crop Breeding, 13, 140-151.
Anandan, A., & Eswaran, R. (2009). Genotype by environment interactions of rice (Oryza sativa L.) hybrids in the east coast saline region of Tamil Nadu. In "the Proceeding of 2ⁿd Interaction Rice Congress".
Annicchiarico, P. (1997). Joint regression vs AMMI analysis of genotype-environment interactions for cereals in Italy. Euphytica, 94, 53-62.
Annicchiarico, P., Russi, L., Piano, E., & Veronesi, F. (2006). Cultivar adaptation across Italian locations in four turfgrass species. Crop Science, 46, 264-272.
Bartlett, M.S. (1937). Properties of sufficiency and statistical tests. Proceedings of the Royal Society of London. Series A-Mathematical and Physical Sciences, 160, 268-282.
Cheloei, G., Ranjbar, G.A., Babaeian Jelodar, N., Bagheri, N., & Noori, M.Z. (2020). Using AMMI model and its parameters for yield stability analysis of rice (Oryza sativa L.) advanced mutant genotypes of Tarrom-Mahalli. Iranian Journal of Genetics and Plant Breeding, 9, 70-83.
Cook, D., & Scott, R. (1993). The sugar beet crop: science into practice, Champan and Hall Press, New York, USA.
FAO. (2018). Food and agriculture organization. World Food and Agriculture- Statistical Pocketbook,. FAO, Rome, Italy.
Gauch, H. 1992. Statistical analysis of regional yield trials: AMMI analysis of factorial designs, Elsevier Science Publishers
Gauch, J.R., & Hugh, G. (1988.) Model selection and validation for yield trials with interaction. Biometrics, 705-715.
Hall, A.J., & Richards, R.A. (2013). Prognosis for genetic improvement of yield potential and water-limited yield of major grain crops. Field Crops Research, 143, 18-33.
Hassani, M., Heidari, B., Dadkhodaie, A., & Stevanato, P. (2018). Genotype by environment interaction components underlying variations in root, sugar and white sugar yield in sugar beet (Beta vulgaris L.). Euphytica, 214, 1-21.
Jambhulkar, N., Bose, L., & Singh, O. (2014). AMMI stability index for stability analysis. Central Rice Research Institute, Cuttack, Orissa, 35, 15-15.
Kang, M.S. (1997). Using genotype-by-environment interaction for crop cultivar development. Advances in agronomy, 62, 199-252.
Karimizadeh, R., Asghari, A., Chinipardaz, R., Sofalian, O., & Ghaffari, A. (2016). Determining yield stability and model selection by AMMI method in rain-fed durum wheat genotypes. Turkish Journal of Field Crops, 21, 174-183.
Kunz, M., Martin, D., & Puke, H. (2002). Precision of beet analyses in Germany explained for polarization. Zuckerindustrie, 127, 13-21.
Malosetti, M., Ribaut, J.-M., & van Eeuwijk, F.A. (2013). The statistical analysis of multi-environment data: modeling genotype-by-environment interaction and its genetic basis. Frontiers in Physiology, 4, 44.
Monteiro, F., Frese, L., Castro, S., Duarte, M.C., Paulo, O.S., Loureiro, J., & Romeiras, M.M. (2018). Genetic and genomic tools to asssist sugar beet improvement: the value of the crop wild relatives. Frontiers in plant science, 9, 74-85.
Mostafavi, K., Rajabi, A., & Orazizadeh, M.R. (2017). Genotype- environment interaction pattern analysis for sugar beet (Beta vulgaris L.) cultivars yield using AMMI multivariate method. Journal of Sugar Beet, 33, 135-147.
Mostafavi, K., & Saremirad, A. (2021). Genotype - Environment Interaction Study in Corn Genotypes Using additive main effects and multiplicative interaction method and GGE- biplot Method. Journal of Crop Production, 14, 1-12.
Najafi Mirak, T., Dastfal, M., Andarzian, B., Farzadi, H., Bahari, M., & Zali, H. (2018). Evaluation of durum wheat cultivars and promising lines for yield and yield stability in warm and dry areas using AMMI model and GGE biplot. Journal of Crop Breeding, 10, 1-12.
Omrani, S., Omrani, A., Afshari, M., Saremirad, A., Bardehji, S., & Foroozesh, P. (2019). Application of Additive Main Effects and Multiplicative Interaction and Biplot Graphical Analysis Multivariate Methods to Study of Genotype-Environment Interaction on Safflower Genotypes Grain Yield. Journal of Crop Breeding 11, 153-163.
Peng, S., Cassman, K.G., Virmani, S., Sheehy, J., & Khush, G. (1999). Yield potential trends of tropical rice since the release of IR8 and the challenge of increasing rice yield potential. Crop Science, 39, 1552-1559.
Purchase, J.L. (1997). Parametric analysis to describe genotype x environment interaction and yield stability in winter wheat, University of the Free State.
Rajabi, A., Ahmadi, M., Bazrafshan, M., Hassani, M., & Saremirad, A. (2022). Evaluation of resistance and determination of stability of different sugar beet (Beta vulgaris L.) genotypes in rhizomania-infected conditions. Food Science & Nutrition, 11, 1403-1414.
Raju, B. (2002). A study on AMMI model and its biplots. Indian Society of Agricultural Statistics (India), 55, 297-322.
Ramzi, E., Asghari, A., Khomari, S., & Mohammaddoust e Chamanabad, H. (2018). Investigation of durum wheat (Triticum turgidum L. subsp. durum Desf) lines for tolerance to aluminum stress condition. Journal of Crop Breeding, 10, 63-72.
Rao, A., & Prabhakaran, V. (2005). Use ofAMMI in Simultaneous Selection of Genotypes for Yield and Stability. Journal of the Indian Society of Agricultural Statistics, 59, 76-82.
Ribeiro, I.C., Pinheiro, C., Ribeiro, C.M., Veloso, M.M., Simoes-Costa, M.C., Evaristo, I., Paulo, O.S., & Ricardo, C.P. (2016). Genetic diversity and physiological performance of Portuguese wild beet (Beta vulgaris spp. maritima) from three contrasting habitats. Frontiers in Plant Science, 7, 1293.
Sabaghnia, N., Dehghani, H., Alizadeh, B., & Mohghaddam, M. (2010). Genetic analysis of oil yield, seed yield, and yield components in rapeseed using additive main effects and multiplicative interaction biplots. Agronomy Journal, 102, 1361-1368.
Sadeghzadeh Hemayati, S., Saremirad, A., Hosseinpour, M., Jalilian, A., Ahmadi, M., Azizi, H., Hamidi, H., Hamdi, F., & Matloubi Aghdam, F. (2022). Evaluation of white sugar yield stability of some commercially released sugar beet cultivars in Iran from 2011-2020. Seed and Plant Journal, 38, 339-364.
Saremirad, A., & Mostafavi, K. (2021). Using AMMI and Biplot Graphical Analysis Multivariate Methods to Evaluate the Effect of Genotype-Environment Interaction in Cotton Genotypes. Iranian Journal of Cotton Researches, 8, 127-144.
Sharifi, P., Aminpanah, H., Erfani, R., Mohaddesi, A., & Abbasian, A. (2017). Evaluation of genotype× environment interaction in rice based on AMMI model in Iran. Rice Science, 24, 173-180.
Sneller, C., Kilgore‐Norquest, L., & Dombek, D. (1997). Repeatability of yield stability statistics in soybean. Crop science, 37, 383-390.
Taleghani, D., Rajabi, A., Sadeghzadeh Hemayati, S., & Saremirad, A. (2022). Improvement and selection for drought-tolerant sugar beet (Beta vulgaris L.) pollinator lines. Results in Engineering, 13, 100367.
Taleghani, D., Rajabi, A., Saremirad, A., & Fasahat, P. (2023). Stability analysis and selection of sugar beet (Beta vulgaris L.) genotypes using AMMI, BLUP, GGE biplot and MTSI. Scientific Reports, 13, 10019.
Taleghani, D., & Saremirad, A. (2022). Investigation of genotype-environment interaction effect on sugar yield and determination of stability of sugar beet (Beta vulgaris L.) hybrids. Journal of Crop Breeding, 14, 103-118.
Yaghutipoor, A., Farshadfar, E., & Saeedi, M. (2017). Investigation of bread wheat genotypes for drought tolerance using suitable combination method. Journal of Environmental Stresses in Crop Sciences, 10, 247-256.
Yan, W., & Kang, M.S. (2002). GGE biplot analysis: A graphical tool for breeders, geneticists, and agronomists, CRC press.
Yan, W., Kang, M.S., Ma, B., Woods, S., & Cornelius, P.L. (2007). GGE biplot vs. AMMI analysis of genotype‐by‐environment data. Crop Science, 47, 643-653.
Zali, H., Farshadfar, E., Sabaghpour, S.H., & Karimizadeh, R. (2012). Evaluation of genotype× environment interaction in chickpea using measures of stability from AMMI model. Annals of Biological Research, 3, 3126-3136.
Zali, H., Sofalian, O., Hasanloo, T., Asgharii, A., & Hoseini, S.M. (2015). Appraising of drought tolerance relying on stability analysis indices in canola genotypes simultaneously, using selection index of ideal genotype (SIIG) technique: Introduction of new method. Biological Forum-An International Journal, 7, 425-436.
Zhang, Z., Cheng, L., & Zhonghuai, X. (1998). Analysis of variety stability based on AMMI model. Zuo wu xue bao, 24, 304-309.
Zobel, R. (1994). Stress resistance and root systems. In "Proceedings of the Workshop on Adaptation of Plants to Soil Stress. Institute of Agriculture and Natural Resources, University of Nebraska-Lincoln", pp. 80-99
Zobel, R.W., Wright, M.J., & Gauch Jr, H.G. (1988). Statistical analysis of a yield trial. Agronomy Journal, 80, 388-393.