نوع مقاله : علمی پژوهشی - باغبانی
نویسندگان
1 دانشجوی دکترا، گروه ژنتیک و به نژادی گیاهی، دانشگاه بین المللی امام خمینی(ره)، قزوین، ایران
2 دانشیار گروه ژنتیک و به نژادی گیاهی، دانشکده کشاورزی و منابع طبیعی، دانشگاه بین المللی امام خمینی(ره)، قزوین، ایران
3 استاد، گروه ژنتیک و به نژادی گیاهی، دانشکده کشاورزی و منابع طبیعی، دانشگاه گیلان، رشت، ایران
چکیده
این طرح به منظور تعیین سازگاری و پایداری عملکرد 10 ژنوتیپ توتون و برآورد پایدارترین ژنوتیپ برای مناطق توتونکاری استانهای گیلان، مازندران و گلستان اجرا شد. در این پژوهش 10 ژنوتیپ نرعقیم توتون گرمخانهای در شش منطقه توتونکاری استانهای گیلان، مازندران و گلستان به مدت دو سال زراعی (1397-1398) ارزیابی شدند. ژنوتیپها در 12 محیط، بهصورت جداگانه در قالب طرح بلوکهای کامل تصادفی در سه تکرار مورد بررسی قرار گرفتند. تجزیه مرکب با درنظرگرفتن محیطها بهعنوان فاکتور تصادفی و ژنوتیپها بهعنوان فاکتور ثابت انجام شد. سپس تجزیه پایداری ژنوتیپها به وسیله 10 آماره پایداری و سه مؤلفه اول حاصل از تجزیه AMMI (Additive Main effects and Multiplication Interaction) شامل IPCA1، IPCA2 و IPCA3 انجام گردید. نتایج تجزیه واریانس مرکب نشان داد اثر مکان و اثر متقابل سال × مکان، اثر ژنوتیپ و اثر متقابل ژنوتیپ × سال × مکان در سطح احتمال یک درصد برای صفت عملکرد معنیدار بودند. کمترین مقدار ضریب تغییرات مربوط به ژنوتیپهای DVH2101 و RVH27 بود. با توجه به پارامترهای اکووالانس ریک و واریانس پایداری شوکلا، ژنوتیپهای RVH30، RVH27 و RVH8بهعنوان پایدارترین ژنوتیپها انتخاب شدند. از نظر ضریب تشخیص و آماره جنکینز و پرکینز ژنوتیپهای RVH27، RVH30 و RVH8 در رتبه مشابهی از نظر پایداری قرار گرفتند. در نتیجه با لحاظ نمودن اکثر آمارههای پایداری و تجزیه AMMI، پایدارترین ژنوتیپ، هیبرید RVH27 بوده و هیبریدهای RVH30 و DVH2101 در ردههای بعدی پایداری قرار گرفتند. از نظر سازگاری خصوصی ژنوتیپ RVH6 و NC100 به منطقه توتونکاری تیرتاش و ژنوتیپ شماره RVH27 به منطقه رشت سازگاری خصوصی بالایی نشان دادند.
کلیدواژهها
موضوعات
عنوان مقاله [English]
Evaluation of yield stability of flue cured tobaccos using some univariate and multivariate stability statistics
نویسندگان [English]
- Naghi Hosseinzadeh Fashalami 1
- Roghayeh Aminian 2
- Habibollah Samizadeh 3
1 Ph. D Student, Department of Genetics and Plant Breeding, Imam Khomeini International University, Qazvin, Iran
2 Associate Professor, Department of Genetics and Plant Breeding. Faculty of Agriculture and Natural Resources, Imam Khomeini International University. Qazvin. Iran.
3 Professor, Department of Genetics and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Guilan, Rasht, Iran
چکیده [English]
Introduction
The genotype × environment interaction is one of the most important factors in limiting breeding programs. The compatibility of a given genotype determines its ability and genetic capacity to produce high production and yield stability in different environments. Therefore, it is necessary to study the genotype × environment interaction in order to introduce stable genotypes in different environments. The current research was carried out to determine the compatibility and stability of yield for 10 tobacco genotypes and estimate the most stable genotype for tobacco growing areas in Iran (i.e. Guilan, Mazandaran and Golestan provinces).
Materials and Methods
In this study, 10 male sterile flue cured tobacco genotypes, which they completely tested in terms of quality and taste, including 7 internal modified hybrids named RVH5, RVH6, RVH8, RVH27, RVH30, RVH48, RVH70 along with 3 imported genotype DVH2101, PVH19 and NC100 in 6 tobacco growing regions of Guilan, Mazandaran and Golestan in two years of experiment (2018-2019). In total, 12 environments were studied in a randomized complete block design with 3 replications. Combined analysis was performed by considering the environments as a random factor and genotypes as a fixed factor. Then the stability analysis of genotypes was done by 10 stability statistics and the first 3 components of AMMI (Additive Main effects and Multiplication Interaction) analysis including IPCA1, IPCA2 and IPCA3. Analysis of variance was done using SAS.9 software, AMMI analysis and related graphs were performed using IRRISTAT software.
Results and Discussion
The results of combined analysis of variance showed that the effect of location and year × location interaction, the effect of genotype and genotype × year × location interaction were significant at the 1% probability level for yield. Genotype × environment interaction analysis using the first three main components of the AMMI analysis justified 69.47% of the total variance. The lowest coefficient of variation was related to DVH2101 and RVH27 genotypes. RVH30, RVH27 and RVH8 genotypes were selected as the most stable genotypes. According to Rick equivalence and Shoklaʹs stability variance parameters. The least squares deviation from the regression line were related to RVH27, RVH30 and RVH8 genotypes. In terms of regression coefficient, RVH27, RVH30 and DVH2101 genotypes had a line slope close to 1. Based on the coefficient of determination and Jenkins and Perkins statistics, RVH27, RVH30 and RVH8 genotypes were in the same rank in terms of stability. RVH27 and RVH30 were the most stable genotypes with superiority index. RVH27, RVH30 and DVH2101 genotypes were selected as the most stable hybrids based on the AMMI first model due to their proximity to the plot center, low interaction and high yield. Based on the second model of AMMI analysis, RVH27 and DVH2101 genotypes were selected as stable genotypes. In the third AMMI model, the RVH27 genotype was selected as the stable genotype due to its closeness to the biplot center and high yield.
Conclusion
Considering most of the stability statistics and AMMI analysis, the most stable genotype was RVH27 hybrid. RVH30 and DVH2101 hybrids were placed in the next categories of stability. In addition, genotypes RVH6 and NC100 showed high private compatibility to Tirtash tobacco growing area and genotype RVH27 to Rasht region.
کلیدواژهها [English]
- AMMI analysis
- Biplot
- Genotype × environment interaction
- Main components
zur Tabakforschung/Contributions to Tobacco Research, 8(4), 233-240.
cichoracearum DC.) in oriental and semi-oriental tobacco germplasm under field conditions. Journal
of Crop Improvement, 24 (2), 122-130.