نوع مقاله : علمی پژوهشی - باغبانی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه باغبانی، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، ایران.

2 دانشیار، گروه باغبانی، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، اهواز ایران.

3 دانشیار، گروه باغبانی، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، اهواز، ایران.

4 دانشیار، گروه آبیاری و زهکشی، دانشکده مهندسی آب و محیط زیست، دانشگاه شهید چمران اهواز، ایران.

چکیده

تأثیر دو سامانه کشت بدون خاک‌ باز (آبیاری قطره‌ای) و بسته (تکنیک جریان مواد غذایی تغییریافته) بر خصوصیات فیزیکی، شیمیایی و عملکرد میوه دو رقم گوجه‌فرنگی گلخانه‌ای (22-4V و امیرا) طی سال 1398 در دانشگاه شهید چمران اهواز مورد مطالعه قرار گرفت. آزمایش به صورت کرت­های خرد شده در قالب طرح بلوک­های کامل تصافی با سه تکرار به اجرا در آمد. نتایج آزمایش نشان داد که طول میوه، سفتی بافت و غلظت کلسیم میوه در سامانه کشت بدون خاک باز بهتر شد و مواد جامد محلول، لیکوپن، کاروتنوئید و غلظت سدیم میوه در سامانه کشت بدون خاک بسته بهتر بود. مقدار ظرفیت آنتی‌اکسیدانی و غلظت مواد فنولی و غلظت کلسیم و سدیم میوه در رقم امیرا بهتر بود و مقدار اسیدیته قابل تیتراسیون در رقم 22-4V بهتر شد. محصول میوه در رقم 22-4V (38/29 گرم در بوته) نسبت به رقم امیرا (70/3648 گرم در بوته) بهتر شد. اثر متقابل سامانه کشت بدون خاک و رقم بر غلظت پتاسیم و منیزیم میوه در سطح 1 درصد و ماده خشک میوه در سطح 5 درصد اختلاف معنی‌داری داشت. ظرفیت آنتی‌اکسیدانی میوه و پلی‌فنول کل با غلظت پتاسیم میوه همبستگی مثبت داشتند. براساس نتایج این آزمایش سامانه کشت بدون خاک بسته و رقم امیرا باعث افزایش کیفیت میوه گردید و رقم 22-4V باعث افزایش عملکرد درکشت گلخانه‌ای شد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

The effect of two hydroponic systems on physical, chemical and fruit yield of two greenhouse tomato cultivars

نویسندگان [English]

  • Mohammad Reza Fayezizadeh 1
  • Naser Alemzadeh Ansari 2
  • Esmail Khaleghi 3
  • Mohamad Albaji 4

1 Master student, Department of Horticulture, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran.

2 Associate Professor, Department of Horticulture, Shahid Chamran University of Ahvaz, Ahvaz, Iran.

3 Associate Professor, Department of Horticulture, Shahid Chamran University of Ahvaz, Ahvaz, Iran.

4 Associate Professor, Department of Irrigation and Drainage, Faculty of Water and Environmental Engineering, Shahid Chamran University of Ahvaz, Iran.

چکیده [English]

Introduction
Tomato is an economical high value product which is used fresh or processed. Having compound such as fibers, vitamin A, vitamin B, lycopene, carotenoids, ascorbic acid and polyphenols in this product leads to prevent the cancer and cardiovascular diseases. Even though biosynthesis and accumulation of this biochemical matter in tomato fruit when growing is affected by the production conditions such as methods of production environmental factors and plant genetics. Tomatoes produced in a closed hydroponic system have better flavor and marketability. This research is done to show the affects to the physical and chemical characteristics and productivity of two greenhouse tomato cultivars in two open and closed systems.
 
Materials and Methods
In this research the effects of two open (drip) and closed (modified nutrient film technique) hydroponic systems on physical and chemical characteristics and productivity of two greenhouse tomato cultivars (V4-22 cultivar breaded in Shahid Chamran University of Ahvaz and Amira cultivar from Rijkzwaan company of Netherland) was studied as split plot based on a randomized complete block design with three replications in agricultural faculty of Shahid Chamran University of Ahvaz. The information gathered and correlation between characteristics were analyzed statically by MSTAT-C 1.2 software. To compare the means, Duncan's multi domain test in 5% level was used. Some of the quantitative and qualitative characteristics include productivity, fruit length, fruit diameter and fruit volume, fruit firmness, pH, titratable acidity, total soluble solid, fruit dry matter, lycopene, fruit carotenoids, antioxidant capacity, polyphenols content, concentration of fruit elements such as potassium, sodium, calcium and magnesium were analyzed.
 
Results and Discussion
The results of the experiment showed that the most fruit length, fruit firmness, and calcium concentration were recorded in the plants cultivated in open system and the highest total soluble solid, lycopene, carotenoids and fruit sodium concentration were seen in the closed system. The most antioxidant capacity, polyphenols content, concentration of calcium and sodium were observed in Amira cultivar and the most titratable acidity was recognized in V4-22 cultivar. The maximum yield belonged to V4-22 cultivar (3847/29 g per plant) and minimum yield belonged to Amira cultivar (3648/70 g per plant). The interaction effect of hydroponic system and cultivar on concentration of magnesium and potassium in 1% level and dry matter in 5% level were significantly different. The correlation between Antioxidant capacity, fruit total soluble solids content, vitamin C, lycopene and polyphenols content with potassium concentration was positive and significant.
 
Conclusion
The results showed that V4-22 cultivar had higher yield than Amira cultivar and this is due to the adaptation of this cultivar to the environmental conditions of Ahvaz greenhouse. In this study, crop yield in both open and closed systems was not significantly different and the closed system increased the quality characteristics of fruit including total soluble solids, lycopene and carotenoids compared to the open system. This can be due to the most availability of nutrient solution in the closed system compared to the open system. The lowest capacity of antioxidant and total polyphenols were obtained in V4-22 cultivar. The decrease in production of these secondary metabolites indicates that this cultivar is more compatible with production conditions.
 

کلیدواژه‌ها [English]

  • Lycopene
  • Carotenoids
  • Antioxidant
  • polyphenols
Ahmad khan, M., Shahid Javed, B., Ahmed Khan, K., Nadeem, F., Yousaf, B., & Umer Javed, H. 2017. Morphological and physicobiochemical characterization of various tomato cultivars in a simplified soilless media. Annals of Agricultural Sciences, 62, 139-143.
Ahmadi, M., & Souri, M.K. 2018. Growth and mineral elements of coriander (Corianderum sativum L.) plants under mild salinity with different salts. Acta Physiologia Plantarum, 40, 94-99.
Antolinos, V., Sanchez-Martinez, M.J., Maestre-Valero, J.F., Lopez-Gomez, A., & Martinez-Hernandez, G.B. 2020. Effects of Irrigation with Desalinated Seawater and Hydroponic System on Tomato Quality. Water, 12(2), 518.
Azarmi, R., & Chaparzadeh, N. 2018. The Effect of Salinity and Fruit Ripening Stage on Some Quantitative and Quantitative Characteristics of Tomato in Hydroponics. Plant Productions, 41(2), 91-102. [In Persian]
Benzie, I.F., & Strain, J.J. 1996. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical biochemistry, 239(1), 70-76.
Bucheli, P., Voirol, E., Dela Torre, R., Lopez, J., Rytz, A., Tanksley, S.D., & Petiard, V.1999. Definition of nonvolatilemarkers for flavor of tomato (Lycopersicon esculentumMill.) as tools inselection and breeding. Journal of agricultural and food chemistry, 47(2), 659-664.
Chen, J., Kang, S., Du, T., Qiu, R., Guo, P., & Chen, R. 2013. Quantitative response of greenhouse tomato yield and quality to water deficit at different growth stages. Agricultural water management, 129, 152-162.
Dalvand, S., Alamzadeh Ansari, N., & Mortazavi, M.H. 2015. Effect of soilless substrates on fruit quality of four greenhouse tomato cultivars. Iranian Journal of Horticultural Science and Technology, 17(4), 388-377. [In Persian]
Dehnavard, S., Souri, M.K., & Mardanlu, S. 2017. Tomato growth responses to foliar application of ammonium sulfate in hydroponic culture. Journal of Plant Nutrition, 40(3), 315-323.
Dorais, M., & Pepin, S. 2010. Soil oxygenation effects on growth, yield and nutrition of organic greenhouse tomato crops. In I International Conference on Organic Greenhouse Horticulture, 915, 91-99.
Fanasca, S., Colla, G., Rouphael, Y., Saccardo, F., Maiani, G., Venneria, E., & Azzini, E. 2006. Evolution of nutritional value of two tomato genotypes grown in soilless culture as affected by macrocation proportions. HortScience, 41(7), 1584 -1588‌.
FAO. 2019. Statistical database of the FAO. faostat [Electronic version]. Available: http: //faostat. fao.org/site/339/default. aspx. Access date: 2/1/2020.
Guo, C., Yang, J., Wei, J., Li, Y., Xu, J., & Jiang, Y. 2003. Antioxidant activities of peel, pulp and seed fractions of common fruits as determined by FRAP assay. Nutrition research, 23(12), 1719-1726.
Hao, X., & Papadopoulos, A.P. 2002. Growth, photosynthesis and productivity of greenhouse tomato cultivated in open or closed Rockwool systems. Canadian journal of plant science, 82(4), 771-780.
Heimler, D., Romani, A., & Ieri, F. 2017. Plant polyphenol content, soil fertilization and agricultural management: a review. European Food Research and Technology, 243(7), 1107-1115.
Hernandez, Y., Lobo, M.G., & Gonzalez, M. 2006. Determination of vitamin C in tropical fruits: A comparative evaluation of methods. Food chemistry, 96(4), 654-664.
Johkan, M., Nagatsuka, A., Yoshitomi, A., Nakagawa, T., Maruo, T., Tsukagoshi, S., & Shinohara, Y. 2014. Effect of moderate salinity stress on the sugar concentration and fruit yield in single-truss, high-density tomato production system. Journal of the Japanese Society for Horticultural Science, CH-096, 1-6.
Kaur, H., Bedi, S., Sethi, V.P., & Dhatt, A.S. 2018. Effects of substrate hydroponic systems and different N and K ratios on yield and quality of tomato fruit. Journal of Plant Nutrition, 41(12), 1547-1554.
Klunklin, W., & Savage, G. 2017. Effect on quality characteristics of tomatoes grown under well-watered and drought stress conditions. Foods, 6(8), 56.
Koleska, I., Hasanagic, D., Todorovic, V., Murtic, S., Klokic, I., Paradikovic, N., & Kukavica, B. 2017. Biostimulant prevents yield loss and reduces oxidative damage in tomato plants grown on reduced NPK nutrition. Journal of Plant Interactions, 12(1), 209-218.
Layegh, M., Peyvast, G.H., Samizadeg, H., & Khososi, M. 2009. The effect of nutrient solution salinity on growth, yield and quality traits of tomato in soilless cultivation system. Journal of Horticultural Sciences, 22(2), 39-48. [In Persian]
Li, Y.L., Stanghellini, C., & Challa, H. 2001. Effect of electrical conductivity and transpiration on production of greenhouse tomato (Lycopersicon esculentum L.). Scientia Horticulturae, 88(1), 11-29.
Malon, M., & Andrews, J. 2001. The distribution of xylem hydraulic resistance in the fruiting truss of tomato. Plant cell-environm, 24, 565-570.
Mardanluo, S., Souri, M.K., & Ahmadi, M. 2018. Plant growth and fruit quality of two pepper cultivars under different potassium levels of nutrient solutions. Journal of Plant Nutrition, 41(12), 1604-1614.
Marti, R., Rosello, S., & Cebolla-Cornejo, J. 2016. Tomato as a source of carotenoids and polyphenols targeted to cancer prevention. Cancers, 8(6), 58.
Mazlomi, F., Ronaqhi, A., & Karimian, N. 2011. Effect of salinity and calcium supplementation on vegetative growth, fruit yield and concentration of some elements in strawberries in soilless cultivation. Journal of Greenhouse Crop Science and Technology, 2(2): 51-63. [In Persian]
Moya, C., Oyanedel, E., Verdugo, G., Flores, M.F., Urrestarazu, M., & Alvaro, J.E. 2017. Increased electrical conductivity in nutrient solution management enhances dietary and organoleptic qualities in soilless culture tomato. HortScience, 52(6), 868-872.
Resh, H.M. 2013. Hydroponic food production. A definitive guidebook of soilless food growing methods (No. Ed. 5). Woodbridge press publishing company. pp 27.
Rodriguez-Ortega, W.M., Martinez, V., Nieves, M., Camara-Zapata, J.M., & Garcia-Sanchez, F. 2017. Agronomic and physiological responses of tomato plants grown in different soilless systems to saline conditions (No. e2983v1). PeerJ Preprints, 9(1), 1-13.
Rodriguez-Ortega, W.M., Martinez, V., Nieves, M., Simon, I., Lidon, V., Fernandez-Zapata, J.C., & Garcia-Sanchez, F. 2019. Agricultural and physiological Responses of tomato plants Grown in Different Soilless Culture systems with saline Water under Greenhouse Conditions. Scientific reports, 9(1), 1-13.
Romero-Aranda, R., Soria, T., & Cuartero, J. 2001. Tomato plant-water uptake and plant-water relationships under saline growth conditions. Plant science, 160(2), 265-272.
Saito, T., Matsukura, C., Ban, Y., Shoji, K., Sugiyama, M., Fukuda, N., & Nishimura, S. 2008. Salinity stress affects assimilate metabolism at the gene-expression level during fruit development and improves fruit quality in tomato (Solanum lycopersicum L.). Journal of the Japanese Society for Horticultural Science, 77(1), 61-68.
Saleh, S., Liu, G., Liu, M., Liu, W., Gruda, N., & He, H. 2019. Reducing the salinity impact on soilless culture of tomatoes using supplemental Ca and foliar micronutrients. Acta Scientiarum Polonorum. Hortorum Cultus, 18(3), 187-200.
Schmautz, Z., Loeu, F., Liebisch, F., Graber, A., Mathis, A., Griessler Bulc, T., & Junge, R. 2016. Tomato productivity and quality in aquaponics: Comparison of three hydroponic methods. Water, 8(11), 1-21.
Shongwe, L.T., Masarirambi, M.T., Oseni, T.O., Wahome, P.K., Nxumalo, K.A., & Gule, P.I. 2019. Effects of Hydroponics Systems on Growth, Yield and Quality of Zucchini (Cucurbita pepo L.). Journal of Plant Studies, 8(2), 61-72.
Souri, M.K., & Hatamian, M. 2019. Aminochelates in plant nutrition; a review. Journal of Plant Nutrition, 42(1), 67-78.
Tahmasebi, F., Hasibi, P., & Mesgarbashi, M. 2010. Physiological study of the effect of irrigation with saline water from NaCl and CaCl2 sources on three rapeseed (Brassica napus L.) genotypes in Ahvaz climate. Master Thesis. Shahi Chamran University of Ahwaz. [In Persian]
Tohidloo, G., Souri M.K., & Eskandarpour, S. 2018. Growth and fruit biochemical characteristics of three strawberry genotypes under different potassium concentrations of nutrient solution. Open Agriculture, 3, 356-362.
Wang, M., Dong, C., & Gao, W. 2019. Evaluation of the growth, photosynthetic characteristics, antioxidant capacity, biomass yield and quality of tomato using aeroponics, hydroponics and porous tube-vermiculite systems in bio-regenerative life support systems. Life sciences in space research, 22, 68-75.‏
Whitaker, B.D. 1991. Changes in lipids of tomato fruit stored at chilling and non-chilling temperatures. Phytochemistry, 30(3), 757-761.
Zaller, G.J. 2007. Vermicompost as a substitute for peat in potting media: Effects on germination, biomass allocation, yields and fruit quality of three tomato varieties. Scientia Horticulturae, 112, 191–199.
Zarei, L., Saba, M.K., & Vafai, Y. 2020. Effect of Gamma-Amino-Butyric Acid (GABA) Foliar Application on Chilling and Postharvest Quality of Tomato (cv. Newton). Plant Productions, 43(2), 199-212. [In Persian]
Zhang, P., Senge, M., & Dai, Y. 2016. Effects of salinity stress on growth, yield, fruit quality and water use efficiency of tomato under hydroponics system. Reviews in Agricultural Science, 4, 46-55.