بررسی برهمکنش منابع نیتروژن و بی‌‌کربنات سدیم بر رشد و برخی خصوصیات مرفو-فیزیولوژیکی گیاه سیر در سیستم هیدروپونیک

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانش‌‌آموخته کارشناسی ارشد رشته علوم باغبانی، گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه ولی عصر عج رفسنجان، رفسنجان، ایران

2 استاد، گروه علوم و مهندسی باغبانی، دانشکده کشاورزی و محیط زیست، دانشگاه اراک، اراک، ایران

3 استادیار، گروه علوم باغبانی، دانشگاه پردیس ابوریحان تهران، تهران، ایران

4 دانشجوی دکتری علوم باغبانی، گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه ولی عصر عج رفسنجان، رفسنجان، ایران

10.22055/ppd.2020.31011.1821

چکیده

چکیده
شوری و قلیائیت خاک‌ها اثرات مخربی بر 932 میلیون هکتار از زمین‌های جهان دارد. هم‌چنین سبب کاهش تولید محصول در 100 میلیون هکتار از زمین‌های قاره آسیا شده است. این تحقیق به ‌منظور ارزیابی اثرات متقابل منابع نیتروژن و سطوح بی‌کربنات سدیم بر خصوصیات رشدی، فیزیولوژیکی و پارامترهای فلورسانس کلروفیل دو ژنوتیپ سفید و بنفش سیر در گلخانه هیدروپونیک، دانشکده کشاورزی، دانشگاه ولی‌عصر (عج) رفسنجان در سال 1395 انجام شد. آزمایش به‌صورت فاکتوریل و در قالب طرح کاملاً تصادفی با سه فاکتور بی‌کربنات سدیم در سه سطح (صفر، 10 و 20 میلی‌مولار)، نیتروژن در سه سطح (سولفات آمونیوم، نیترات آمونیوم و نیترات کلسیم با غلظت پنج میلی‌مولار نیتروژن) و دو ژنوتیپ سیر (سفید و بنفش) با 3 تکرار انجام شد. نتایج نشان داد که کاربرد منابع نیترات آمونیوم و سولفات آمونیوم اثر منفی بی‌کربنات را بر وزن تر و خشک اندام هوایی و وزن تر و خشک ریشه کاهش داد. گیاهان تغذیه‌شده با سولفات آمونیوم بیش‌ترین مقدار قند محلول در هر دو ژنوتیپ سیر (4/1 و 32/1 میلی‌گرم برگرم وزن تر برگ به‌ترتیب در ژنوتیپ سفید و بنفش) را به خود اختصاص دادند. میزان پرولین با افزایش غلظت بی‌کربنات سدیم در هر دو ژنوتیپ سیر افزایش یافت. بیشترین مقدار رنگیزه‌های فتوسنتزی تحت تأثیر بی‌کربنات در گیاهانی مشاهده شد که با نیترات آمونیوم و سولفات آمونیوم تغذیه شده بودند. منابع نیتروژن، بی‌کربنات سدیم و برهمکنش آن‌ها بر شاخص‌های فلورسانس کلروفیل تأثیری نداشت و تنها اثر ژنوتیپ بر این صفت معنی‌دار شد. در مجموع، کاربرد سولفات آمونیوم و نیترات آمونیوم سبب بهبود خصوصیات رشدی و عملکردی ژنوتیپ‌های سیر در شرایط تنش قلیائیت شد. براساس یافته‌های این مقاله می‌توان به این نکته اشاره کرد که با تغییر در محلول‌های غذایی مورد‌نیاز گیاهان در شرایط تنش می‌توان از میزان خسارت به آن‌ها کاست و از این تغییر سبب بهبود خصوصیات رشدی و عملکردی گیاهان در شرایط تنش شد.
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of the Interactive Effects of Nitrogen Sources and Sodium Bicarbonate on The Growth and Some Morpho-Physiological Characteristics of Garlic in Hydroponic System

نویسندگان [English]

  • Mahdiyeh Shojaei Khanisi 1
  • Hamid Reza Roosta 2
  • Mahmoudreza Roozban 3
  • Hamidreza Soufi 4
1 M.Sc. of Horticultural Sciences, Department of Horticulture Science, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
2 Professor, Department of Horticultural Sciences, Faculty of Agriculture and Natural resources, Arak University, Arak, Iran
3 Assistant Professor, Department of Horticulture Sciences, Faculty of Agriculture, Pardis Abouryhan, Tehran, Iran
4 Ph.D. Student of Horticulture Science, Department of Horticulture Sciences, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
چکیده [English]

Abstract
Introduction
Soil salinity and alkalinity seriously affect about 932 million hectares of land globally, reducing productivity in about 100 million hectares in Asia. Plants in alkaline soil must cope with physiological drought and ion toxicity, and also maintain intracellular ion balance and regulate pH outside the roots. Alkaline stress result into decrease in chlorophyll concentration, stomatal conductance and transpiration rate and inhibite the growth of plant. Nitrogen sources affect the pH of nutrition solution, which can affect plant growth, so nitrate increases the pH of nutrient solution while ammonium decreases pH of nutrition solution.
 
Materials and Methods
In order to evaluate the effect of nitrogen sources on vegetative growth, physiological and chlorophyll fluorescence of white and purple garlic genotypes under sodium bicarbonate stress, an experiment was carried out as factorial base on completely randomize desigen with three factors; sodium bicarbonate at three levels (0, 10 and 20 mM), nitrogen sources (5 mM ammonium sulfate, ammonium nitrate and calcium nitrate in nutrient soulotion) and genotypes (white and purple) with three replications in 2017 in Greenhouse of Faculty of a Agriculture, University of  Vali-e-asr Rafsanjan.
 
Results and Discussion
The results showed that shoot and root fresh and dry weight decreased by increasing sodium bicarbonate from 10 mM to 20 mM in nutrient solution and application of ammonium nitrate and ammonium sulfate sources decreased the negative effect of sodium bicarbonate on shoot and root fresh and dry weights. Among nitrogen sources, ammonium sulfate produced the highest soluble sugar content in both garlic genotypes. Proline content was enhanced by increasing sodium bicarbonate concentration in nutrient solution. The highest photosynthetic pigments were absorbed in plant that nourished by ammonium nitrate and ammonium sulfate, respectively. The sources of nitrogen, sodium bicarbonate and their interaction had no significant effect on chlorophyll fluorescence parameters, but genotype had significant effect on these traits.
 
Conclusion
According to the results of this experiment, the use of ammonium sulfate and ammonium nitrate sources has a better performance on growth and yield of garlic under bicarbonate stress conditions.
 

کلیدواژه‌ها [English]

  • Alkalinity
  • Allium sativum
  • Ammonium
  • nitrate
  • Soilless culture
References
Aghighi Shahverdi, M., Amini Dehaghi, M., Ataei Somagh, H., & Mamivanad, B. (2019). the effect of different nutritional systems with nitrogen and phosphorous fertilizers on quantitative and qualitative traits of basil (Ocimum basilicum L.). Plant Productions, 41(4), 1-14. [In Farsi]
Alhendawi, R. A., Romheld, V., Kirkby, E. A., & Marschner, H. (1997). Influence of increasing bicarbonate concentrations on plant growth, organic acid accumulation in roots and iron uptake by barley, sorghum, and maize. Journal of Plant Nutrition, 20(12), 1731-1753.
Bagheri, V., & Roosta, H. R. (2013). Effect of different concentrations of sodium bicarbonate (alkalinity stress) On some varieties of cabbage in hydroponic system. Envromental Stress in Crop Science, 5(1), 67-80. [In Farsi]
Bagheri, V., Manzari tavakoli, M., Roosta, H. H., & Hosieni, M. R. (2011). The effect of different levels of sodium bicarbonate on vegetative and physiological characteristics of lettuce in hydroponic conditions. 7th Iranian Horticultural Science Congress, 5 to 8 september 2011, University of Isfahan. [In Farsi]
Chen, S., Chen, W., Shen, X., Yang, Y., Qi, F., Liu Y., & Meng, H. (2014). Analysis of the genetic diversity of garlic (Allium sativum L.) by simple sequence repeat and inter simple sequence repeat analysis and agro-morphological traits. Biochemical Systematics and Ecology, 55(1), 260-267.
Coolong, T. W., Kopsell, D. A., Kopsell, D. E., & Randle, W.M. 2005. Nitrogen and sulfur influence nutrient usage and accumulation in onion. Journal of Plant Nutrition, 27(9), 1667-1686.
Dehnavard, S., Souri, M. K., & Mardanlu, S. (2017). Tomato growth responses to foliar application of ammonium sulfate in hydroponic culture. Journal of Plant Nutrition, 40(3), 315-323.
Delfieh, M., Modarres-Sanavy, S. A. M., & Farhoudi, R. (2017). Investigating the effects of plant density, seed inoculation with bacteria and different nitrogen fertilizing methods on yield, yield components and essential oil of fennel (Foeniculum vulgare Mill.). Plant Production, 40(1), 111-123. [In Farsi]
Estaji, A., Roosta, H. R., & Raghami, M. 2017. Comparison of vegetative traits and root yield of licorice (Glycyrrhiza glabra) influenced by different sources of nitrogen in several soilless and soil culture systems. Journal of Science and Technology of Greenhouse Culture, 8(2), 105-117. [In Farsi]
FAO. (2017). FAO Land and plant nutrition management service. Available at (online): http://www.
fao.org/ag/agl/agll/spush/. Accessed 25 April 2014.
Gao, D. W., Hu, Q., Yao, C., & Ren, N. Q. (2014). Treatment of domestic wastewater by an integrated anaerobic fluidized-bed membrane bioreactor under moderate to low temperature conditions. Bioresource Technology, 159(1), 193-198.
Getaneh, T., & Dechassa, N. (2018). Effect of manure and nitrogen rates on growth and yield of garlic (Allium sativum L.) at Haramaya, Eastern. Journal of Horticulture and Forestry, 10(9), 135-142.
Hatamian, M., & Souri, M. K. (2019). Postharvest quality of roses under different levels of nitrogenous compounds in holding solution. Open Agriculture, 4(1), 79-85.
Hatamian, M., Rezaie Nejad, A., Kafi, M., Souri, M. K., & Shahbazi, K. (2018). Interactions of Lead and Nitrate on Growth Characteristics of Ornamental Judas Tree (Cercis siliquastrum). Open Agriculture, 3(), 386-392.
Hoagland, D. R., & Arnon, D. I. (1950). The water-culture method for growing plants without soil. Circular. California agricultural experiment station, Circular-347. California Agricultural Experiment Station, University of California-Berkeley, Berkeley, CA.
Hore, J. K., Ghanti, S., & Chanchan, M. (2014). Influence of nitrogen and sulphur nutrition on growth and yield of garlic (Allium sativum L.). Journal of Crop and Weed, 10(2), 14-18.
Hu, L., Xiang, L., Li, S., Zou, Z., & Hu, X. H. (2016). Beneficial role of spermidine in chlorophyll metabolism and D1 protein content in tomato seedlings under salinity-alkalinity stress. Physiologia Plantarum, 156(4), 468-477.
Irigoyen, J. J., Einerich, D. W., & Sanchez‐Diaz, M. (1992). Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. Physiologia Plantarum, 84(1), 55-60.
Khan M. N., Siddiqui, M. H., Mohammad, F., Naeem, M., & Khan, M. M. A. (2010). Calcium chloride and gibberellic acid protect linseed (Linum usitatissimum L.) from NaCl stress by inducing antioxidative defence system and osmoprotectant accumulation. Acta Physiologiae Plantarum, 32(1), 121-130.
Kopittke, P. M., & Menzies, N. W. (2005). Control of nutrient solutions for studies at high pH. Plant and Soil, 266(1), 343-354.
Latef, A. A. A., & Tran, L. S. P. (2016). Impacts of priming with silicon on the growth and tolerance of maize plants to alkaline stress. Frontiers in Plant Science, 7(1), 243.
Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology, 148(1), 350-382.
Liu, J., & Shi, D. C. (2010). Photosynthesis, chlorophyll fluorescence, inorganic ion and organic acid accumulations of sunflower in responses to salt and salt-alkaline mixed stress. Photosynthetica, 48(1),127-134.
Malakuti, M., & Shahabi, A. (2003). The role of bicarbonate in the development of nutritional defects in fruit trees. Tehran: Sena Press. [In Farsi]
Mamnoei, E., & Sharifi, R. S. (2010). Study the effects of water deficit on chlorophyll fluorescence indices and the amount of proline in six barley genotypes and its relation with canopy temperature and yield. Iranian Journal of Plant Biology, 2(5), 51-62. [In Farsi]
Momeni Demneh, J., & Panahi, F. (2016). Investigation of biochemical properties in cheradagh plant. (Nitraria schoberi L under alkaline water stress. Journal of Renewable Natural Resources Research, 6(3), 61-73. [In Farsi]
Nasreen, S., Haque, M. M., Hossain, M. A., & Farid, A. T. M. (2008). Nutrient uptake and yield of onion as influenced by nitrogen and sulphur fertilization. Bangladesh Journal of Agricultural Research, 32(3), 413-420.
Noori, M., Dashti, F., & Bayat, F. (2015). Changes in vegetative growth charactrices and garlic yield at different sources and levels of nitrogen fertilizer. Journal of Vegetables Science, 1(1), 21-32. [In Farsi]
Paquin, R., & Lechasseur, P. (1979). Observations sur une methode de dosage de la proline libre dans les extraits de plantes. Canadian Journal of Botany, 57(18), 1851-1854.
Paz, R. C., Reinoso, H., Espasandin, F. D., Gonzalez Antivilo, F. A., Sansberro, P. A., Rocco, R. A., & Menendez, A. B. (2014). Akaline, saline and mixed saline–alkaline stresses induce physiological and morpho‐anatomical changes in Lotus tenuis shoots. Plant Biology, 16(6), 1042-1049.
Pearce, R. C., Li, Y., & Bush, L. P. (1999). Calcium and bicarbonate effects on the growth and nutrient uptake of burley tobacco seedlings: hydroponic culture. Journal of Plant Nutrition, 22(7), 1069-1078.
Radi, A. A., Abdel-Wahab, D. A., & Hamada, A. M. (2012). Evaluation of some bean lines tolerance to alkaline soil. Journal of Biology and Earth Sciences, 2(1), 18-27.
Ritchie, R. J. (2006). Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynthesis Research, 89(1), 27-41.
Roosta, H., Rashidi, M., Karimi, H., Alaei, H., & Tadayyonnejhad, M. (2013). Comparison of vegetative growth and minituber yield in three potato cultivars in aeroponics and classic hydroponics with three different nutrient solutions. Journal of Science and Technology of Greenhouse Culture, 4(2), 73-80. [In Farsi]
Sachin, A. J., Bhalerao, P. P., & Patil, S. J. (2017). Effect of organic and inorganic sources of nitrogen on growth and yield of garlic (Allium sativum L.) var. GG-4. International Journal of Chemical Studies. 5(1), 559-562.
Saidi Goraghani, H., YazdaniBiouki., R., Saidi Goraghani, N., & Sodaeezadeh, H. (2014). Effect of Different Nitrogen Sources and Levels on Quantitative and Qualitative Characteristics of Parsley (Petroselinum crispum Mill.) in Jiroft Region. Iranian Journal of Field Crops Research, 12(2), 327-316. [In Farsi]
Satoh, R., Nakashima, K., Seki M., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2002). ACTCAT, a novel cis-acting element for proline-and hypoosmolarity-responsive expression of the ProDH gene encoding proline dehydrogenase in Arabidopsis. Plant Physiology, 130(2), 709-719.
Sebnie, W., Mengesha, M., Girmay, G., & Feyisa, T. (2018). Response of garlic (Allium sativum L.) to nitrogen and phosphorus under irrigation in lasta district of amhara region, Ethiopia. Cogent Food andAgriculture, 4(1), 1532862.
Sharma, M. P., Singh, A., & Gupta, J. P. (2002). Sulphur status and response of onion (Allium cepa) to appliedsulphur in soils of Jammu districts. Indian Journal of Agricultural Sciences, 72(1), 26-28.
Souri, M. K. (2016). Aminochelate fertilizers: the new approach to the old problem: a review. Open Agriculture, 1(1), 118-123.
Souri, M. K., & Dehnavard, S. (2017). Characterization of tomato growth and fruit quality under foliar ammonium sprays. Open Agriculture, 2(1), 531-536.
Souri, M. K., Neumann, G., & Romheld, V. (2009). Nitrogen forms and water consumption in tomato plants. Horticulture, Environment and Biotechnology, 50(5), 377-383.
Souri, M. K., Sooraki, F. Y., & Moghadamyar, M. (2017). Growth and quality of cucumber, tomato, and green bean under foliar and soil applications of an aminochelate fertilizer. Horticulture, Environment, and Biotechnology, 58(6), 530-536.
Tabatabaie, J. (2010). New methods for supplying nutrients to plants in time. Tehran: Sena Publishing. [In Farsi]
Weatherley, P. E. (1951). Studies in the water relations of the cotton plant. New Phytologist, 50(1), 36-51.
Yang, C. W., Xu H. H., Wang, L. L., Liu J., Shi, D. C., & Wang, D. (2009). Comparative effects of salt-stress and alkali-stress on the growth, photosynthesis, solute accumulation, and ion balance of barley plants. Photosynthetica, 47(1), 79-86.
Yang, C., Shi, D., & Wang, D. (2008). Comparative effects of salt and alkali stresses on growth, osmotic adjustment and ionic balance of an alkali-resistant halophyte Suaeda glauca (Bge.). Plant Growth Regulation, 56(2), 179-185.
Yang, J. Y., Zheng, W., Tian, Y., Wu, Y., & Zhou, D.W. (2011). Effects of various mixed salt-alkaline stresses on growth, photosynthesis, and photosynthetic pigment concentrations of Medicago ruthenica seedlings. Photosynthetica, 49(2), 275-284.
Zaman, M. S., Hashem, M. A., Jahiruddin, M., & Rahim, M. A., (2011). Effect of nitrogen for yield maximization of garlic in old brahmaputra flood plain soil. Bangladesh Journal of Agricultural Research, 36(2), 357-367.
 
© 2021 Shahid Chamran University of Ahvaz, Ahvaz, Iran. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International (CC BY 4.0 license) (http://creativecommons.org/licenses/by/4.0/).