References
Abe, N., Murata, T., & Hirota, A. (1998). Novel 1,1-diphenyl-2-picryhy-drazyl-radical scavengers, bisorbicillin and demethyltrichodimerol, from a fungus. Journal Bioscience, Biotechnology, and Biochemistry, 62(4), 661-666.
Anderson, M. D., Prasad, T.K., & Stewart, C. R. (1995). Changes in isoenzyme profiles of catalase, peroxidase and glutathione reductase during acclimation to chilling in mesocotyls of maize seedlings. Plant Physiology, 109(4), 1247-1257.
Anderson, N. O., & Gesick, E. (2004). Phenotypic markers for selection of winter hardy garden chrysanthemums (Dendranthema× grandiflora Tzvelv). Scientia Horticulturae, 101(1-2), 153-167.
Boriboonkaset, T., Theerawitaya, C., Yamada, N., Pichakum, A., Supaibulwatana, K., Cha-um, S., Takabe, T., & Kirdmanee, C. (2013). Regulation of some carbohydrate metabolism-related genes, starch and soluble sugar contents, photosynthetic activities and yield attributes of two contrasting rice genotypes subjected to salt stress. Protoplasma, 250(5), 1157-1167.
Cao, X., Jiang, F., Wang, X., Zang, Y., & Wu, Z. (2015). Comprehensive evaluation and screening for chilling tolerance in tomato lines at the seedling stage. Euphytica, 205(2), 569-584.
Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Calorimetric method for determination of sugars and related substances. Analytical Chemistry Acta, 28(3), 350-356.
Gombos, Z., Wada, H., & Murata, N. (1994). The recovery of photosynthesis from low-temperature photoinhibition is accelerated by the unsaturation of membrane lipids: A mechanism of chilling tolerance. Proceedings of the National Academy of Sciences, 91(19), 8787-8791.
Hasannejad, Z., Seyyednejad, S. M., Gilani, A. A., & Hassibi, P. (2014). The effect of chilling stress on anti-oxidative enzymes activity in two rice (Oryza sativa L.) cultivars. Plant Productions, 37(2), 27-37. [In Farsi]
Hatamian, M., Nejad, A. R., Kafi, M., Souri, M. K., & Shahbazi, K., (2019). Growth characteristics of ornamental judas tree (Cercis siliquastrum L.) seedlings under different concentrations of lead and cadmium in irrigation water. Acta Scientiarum Polonorum-Hortorum Cultus, 18(2), 87-96.
Hu, W. H., Zhou, Y. D., Du, Y. S., Xia, X. J., & Yu, J.Q. (2006). Differential response of photosynthesis in greenhouse and field ecotypes of tomato to long-term chilling under low light. Journal of Plant Physiology, 163(12), 1238-1246.
Huner, N. P. A., Oquist, G., & Sarhan, F. (1998). Energy balance and acclimation to light and cold. Trends in Plant Science, 3(6), 224-230.
Krola, A., Amarowiczb, R., & Weidner, S. (2015). The effects of cold stress on the phenolic compounds and antioxidant capacity of grapevine (Vitis vinifera L.) leaves. Journal of Plant Physiology, 189, 97-104.
Levitt, J. (1980). Chilling injury and resistance: Chilling, freezing, and high temperature stresses. Elsevier, (1), 23-64.
Liu, H., Ouyang, B., Zhang, J., Wang, T., & Li, H. (2012b). Differential modulation of photosynthesis, signaling, and transcriptional regulation between tolerant and sensitive tomato genotypes under cold stress. PLoS One, 7(11), 1-16.
Liu, Y. F, Qi, M. F., & Li, T. L. (2012a). Photosynthesis, photoinhibition, and antioxidant system in tomato leaves stressed by low night temperature and their subsequent recovery. Plant Science, 196(1), 8-17.
Lukatkin, A. S., Brazaityte, A., Bobinas, C., & Duchovskis, P. (2012). Chilling injury in chilling-sensitive plants: A review. Zemdirbyste-Agriculture, 99(2), 111-124.
Maxwell, K., & Johnson, G. N. (2000). Chlorophyll fluorescence a practical guide. Journal of Experimental Botany, 51(345), 659-668.
Nabati, J., Nezami, A., Hasanfard, A. R., & Haghighat Sheshvan, Zh. (2017). The trend of changes in chlorophyll fluorescence parameters in two Vicia faba ecotype during freezing stresses. Iranian Journal of Pulses Research, 9(2), 139-150. [In Farsi]
Naiji, M., & Souri, M. K. (2018). Nutritional value and mineral concentrations of sweet basil under organic compared to chemical fertilization. Acta Scientiarum Polonorum - Hortorum Cultus, 17(2), 167-175.
Nezami, A., Khaninejad, S., Bahrami, M. R., & Zarif Ketab, H. (2018). Maximum efficiency of photosystem II as a freezing stress index in perennial ecotypes of rye (Secale Montanum). Iranian Journal of Field Crops Research, 16(1), 1-14. [In Farsi]
Olenichenko, N. A., Zagoskina, N. V., Astakhova, N. V., Trunova, T. I., & Kuznetsov, Y. V. (2008). Primary and secondary metabolism of winter wheat under wold wardening and treatment with antioxidants. Applied Biochemistry and Microbiology, 44(5), 589-594.
Paupiere, M. J., Van Heusden, A. W., & Bovy, A. G. (2014). The metabolic basis of pollen thermo-tolerance: perspectives for breeding. Metabolites, 4(4), 889-920.
Peng, Q., & Zhou, Q. (2009). Antioxidant capacity of flavonoid in soybean seedlings under the joint actions of rare earth element La (III) and ultraviolet-B stress. Biological Trace Element Research, 127(1), 69-80.
Posmyka, M. M., Bailly, C., Szafranska, K., Janas, K. M., & Corbineau, F. (2005). Antioxidant enzymes and isoflavonoids in chilled soybean (Glycine max (L.) Merr.) seedlings. Journal of Plant Physiology, 162(4), 403-412.
Radyuk, M. S., Domanskaya, N., Shcherbakov, R. A., & Shalygo, N. V. (2009). Effect of low above-zero temperature on the content of low-molecular antioxidants and activities of antioxidant enzymes in green barley leaves. Russian Journal of Plant Physiology, 56(2), 175-180.
Rajabi, R., & Pordad, S. S. (2011). A study on cold resistance in safflower varieties and lines by physiological and biochemical indices. Plant Productions, 33(2), 1-14. [In Farsi]
Singleton, U. L., & Rossi, J. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagent. American Journal of Enology and Viticulture, 16(-), 144-158.
Soliman, M. H., Alayafi, A. A., El Kelish, A. A., & Abu-Elsaoud, A. M. (2018). Acetylsalicylic acid enhance tolerance of Phaseolus vulgaris L. to chilling stress, improving photosynthesis, antioxidants and expression of cold stress responsive genes. Botanical Studies, 59(6), 1-17.
Sowinsky, P., Ruchner, W., Soldati, A., & Stamp, P. (1998). Assimilate transport in maize (Zea mays L.) seedlings at vertical low temperature gradients in the root zone. Journal of Experimental Botany, 49(321), 747-752.
Srinivas, N. D., Rashmi, K. R., & Raghavarao, K. S. M. S. (1999). Extraction and purification of a plant peroxidase by aqueous two-phase extraction coupled with gel filtration. Process Biochemistry, 35(1-2), 43-48.
Stewart, R. R. C., & Bewley, J. D. (1980). Lipid peroxidation associated with accelerated aging of soybean axes. Plant Physiology, 65(2), 245-248.
Teutonica, R. A., Palta, J. P., & Osborn, T. C. (1993). In vitro freezing tolerance in relation to winter survival of rapeseed cultivars. Crop Science, 33(1), 103-107.
Tjus, S. E. (2001). Active oxygen produced during selective excitation of photosystem I Is damaging not only to photosystem I, but also to photosystem II. Plant Physiology, 125(4), 2007-2015.
Velikova, V., Yordanov, I., & Edreva, A. (2000). Oxidative stress and some antioxidant systems in acid rain-treated bean plants: Protective role of exogenous polyamines. Plant Science, 151(1), 59-66.
Venema, J. H., Posthumus, F., de Vries, M., & Van Hasselt, P. R. (1999). Differential response of domestic and wild Lycopersicon species to chilling under low light: Growth, carbohydrate content, photosynthesis and the xanthophyll cycle. Physiologia Plantarum, 105(1), 81-88.
Wagner, G. J. (1979). Content and vacuole/extravacuole distribution of neutral sugars, free aminoacids, and anthocyanin in protoplasts. Plant Physiology, 64(1), 88-93.
Xu, Z., Mahmood, K., & Rothstein, S. J. (2017). ROS induces anthocyanin production via late biosyntheticgenes and anthocyanin deficiency confers the hypersensitivity to ROS-generating stresses in Arabidopsis. Plant Cell Physiology, 58(8), 1364-1377.
Yamaguchi, K., Mori, H., & Nishimura, M. (1995). A novel isoenzyme of ascorbate peroxidase localized on glyoxysomal and leaf peroxisomal membranes in pumpkin. Plant Cell Physiology, 36(6), 1157-1162.
Zhang, Y., Zheng, S., Liu, Z., Wang, L., & Bi, Y. (2011). Both HY5 and HYH are necessary regulators for low temperature-induced anthocyanin accumulation in Arabidopsis seedlings. Journal of Plant Physiology, 168(4), 367-374.