بررسی اثرات محیط کشت، تیمار گندزدایی و هورمونی در ریز ازدیادی برخی از پایه های رویشی سیب(Mallus domestica Borkh.)‏

نوع مقاله: علمی - پژوهشی

نویسندگان

کارشناس ارشد مرکز تحقیقات کشاورزی و منابع طبیعی خراسان رضوی

10.22055/ppd.2017.14039.1189

چکیده

توسعه پایه های رویشی به منظور افزایش عملکرد در باغهای سیب ضروری است و این امر به در دسترس بودن یک روش ساده و آسان تکثیر پایه ها بستگی دارد. در این تحقیق اثر شرایط ضد عفونی، محیط کشت و تیمارهای مختلف هورمونی روی میزان آلودگی، تعداد شاخه جانبی، طول ساقه، کالوس زایی، میزان شاخه‌زایی و تعداد برگ سه پایه رویشی M106، M111 و B9 با استفاده از آزمایش فاکتوریل در قالب طرح کاملاً تصادفی با سه تکرار مطالعه شد. نتایج نشان داد که با استفاده از کلرید جیوه 1/0 % و اتانول 70% به ترتیب به مدت 3 دقیقه و 30 ثانیه کمترین آلودگی حاصل شد. علاوه بر این تفاوت معنی داری بین تیمارها و پایه ها برای صفات مورد مطالعه مشاهده شد. در این آزمایش، محیط کشت MS تغییر یافته همراه با 1/0 میلیگرم در لیتر هورمون بنزیل آدنین با بیشترین درصد رشد، استقرار موفق تری داشت. مقایسه میانگین ها نشان داد که پایه رویشی M106 از نظر کلیه صفات مورد مطالعه نسبت به سایر پایه های رویشی برتری دارد به طوری که بالاترین طول ساقه، کالوس زایی و تعداد برگ در این پایه مشاهده شد. بهترین شاخه زایی از تیمار هورمونی 1/0 میلی گرم در لیتر IBA و 2 میلی گرم در لیتر BAP حاصل شد. ن

کلیدواژه‌ها


عنوان مقاله [English]

Study on the effects of medium, sterilization and hormonal treatment on micropropagation of some apple (Mallus domestica Borkh.) rootstocks

نویسندگان [English]

  • N. Mohamadzadeh Moghadam
  • H. Hamidi
M.Sc., Horticulture Crops Research Department, Khorasan Razavi Agricultural and Natural Resources Research and Education Center, AREEO, Mashhad, Iran
چکیده [English]

Abstract
Background and Objectives
In order to increase yield in apple orchards, multiplication of rootstocks is essential, and it depends on the availability of a simple and easy proliferation method of rootstocks. The study investigated the effect of disinfection, culture condition and plant growth regulators on the rate of contamination, number of lateral branches, stem length, number of leaves, callus creation and the rate of branch creation of rootstocks MM106, MM111 and B9.
Materials and Methods
A factorial experiment was carried out as a completely randomized design with three replications. Surface sterilization of explants with different concentrations of mercuric chloride and sodium hypochlorite (mercuric chloride 0.1% for 3 minutes and ethanol 70% for 30 seconds; mercuric chloride 0.1% for 5 minutes and ethanol 70% for 30 seconds; NaOCl 0.75% for 15 minutes and ethanol 70% for 30 seconds) was done and then explants were cultivated in modified MS, WPM and DKW mediums. The evaluated characters were infection percent of explant, number of lateral branches, stem length, percentage of callus induction and number of leaves. Data were analyzed using SAS software. The analysis of variance on the test data was performed at 5% level and comparison to the middle of the Duncan test.
Results
Results showed that using a mercuric chloride (0.1%) and ethanol (70%) respectively for 3 Minutes and 30 Seconds achieved the least contamination. Results showed significant differences between plant hormone and rootstocks for traits. In this test, the modified MS medium with 0.1 mg/L BA hormones with the largest percentage growth had more successful establishment. Average comparisons showed that rootstock MM106 in terms of all traits had a significant difference with other rootstocks. The highest stem length, number of leaves and callus creation were shown in rootstock MM106. In order to investigate the effect of hormone levels on branch creation, different levels of BAP (6-Benzylaminopurine) and IBA (Indole-3-butyric acid) were used. The best medium was the culture containing 0.1 milligrams per liter IBA plus 2 milligrams per liter BAP.
Discussions
In general, the present results showed that genotypes respond differently to in vitro conditions. The rootstock B9 by the above method showed better response to branch creation trait than other genotypes.

کلیدواژه‌ها [English]

  • Apple
  • Rootstock
  • In vitro
  • Establishment and proliferation
References
Bagheri, A.R. and Vesal, C.R. (2003). Tissue cultures operations of plant. Publication of Imam Reza University. 200 P. [In Farsi]
Canan, C., Ozalsan, M., Toremen, H., Sarpkaya, K., and Iskender, E. (2006). In vitro micrografting of pistachio, Pistacia vera L. Var. siirt, on wild pistachio rootstocks. Journal Cell and Molecular Biology, 5: 25-31
Ciccotti, A.M., Bisognin, C., Battocletti, I., Salvadori, A., Herdemetens, M., and Jarausch, W. (2008). Micropropagation of apple proliferation-resistant apomictic malus sieboldii genotypes. Agricultural Research, 6(2): 445-458.
Dradi, G., Vito, G., and Standardi, A. (1996). In vitro Mass propagation of eleven Prunus mahaleb ecotypes. Acta Horticulturae, 410: 477-483.
Driver, J.A. and Kuniyuki, A.H. (1984). In vitro propagation of Paradox walnut rootstock. Horticultural Science, 19: 507-509.
Emam, M. (2004). Asexual regeneration of mature Juglans regia by shoot tip culture. Pajouhesh and Sazandegi, 63(2):10-15. [In Farsi]
Ghavidel Masole, A. (2003). Micropropagation base maling 26 (M26) and diamond confusion by in vitro method. M.Sc. Thesis, Islamic Azad University, Science and Research Branch. [In Farsi]
Godarzi, R. (1995). Study on the cherry rootstock propagation through tissue culture. M.Sc. Thesis, Tarbiat Modares University. 108 P. [In Farsi]
Gurel, S. and Gulsen, Y. (1998). The effects of IBA and BAP on in vitro shoot production
of Almond (Amygdalus communis L.). Turkish Journal of Botany, 22: 375-379.
Isikalan, C., Akbas, F.A., Namli, S., Tikat, E., and Basaran, D. (2008). In vitro micropropagation of almond (Amygdalus communis L.cv. Nonpareil). African Journal Biotechnology, 7(12): 1875-1880.
Kamali, K. (1995). Determination of the most suitable culture medium and growth conditions for micropropagation of Gf677 (hybrid of almond × peach) rootstocks. M.Sc. Thesis, Tarbiat Modares University. 101 P. [In Farsi]
Khaje aldeini, M. (2001). Study on the micropropagation of apple base of MM106 (Maling merton 106) by using tissue culture technique. M.Sc. Thesis, Islamic Azad University, Science and Research Branch. [In Farsi]
Lane, W.D., Looney, N.E., and Mage, F. (1982). A selective tissue culture medium for growth of compact (dwarf) mutants of apple. Theoretical and Applied Genetics, 61(3): 219-223.
Lloyd, G. and McCown, B. (1980). Commercially feasible micropropagation of mountain laurel Kalmia latifolia, by use of shoot tip culture. International Plant Propagators' Society, 30: 421-427.
Manee, A. 1993. Introduction of wild fruit trees in the service parks. Third Issue. Department of Parks and Green Spaces in Tehran. [In Farsi]
Markafshy, A.C., Motlabiazar, R., Hajiloo, G., and Dezhampour, G. (2009). In vitro plant production GF677 rootstock. The sixth Iranian Horticultural Science Conference. Guilan University, Rasht, Iran. pp:163-65. [In Farsi]
Mohammadinejad, Sh., Gholami, M., and Asnaashari, M. (2014). The effect of culture media and cytokinin on the primary steps of walnut micro propagation, selected genotype 305. Journal of Plant Production, 37(3): 83-92. [In Farsi]
Murashige, T. and Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiologia Plantarum, 15: 473-497.
Ozzambak, E. and Hepaksoy, S. (1997). Investigations on in vitro proliferation of sour cherry cv. Heimanns Rubinweichsel. Acta Horticulturae, 447: 155-156.
Razdan, M.K. (1994). An introduction to plant tissue culture. Oxford and IBH publishing co. PVT. LTD. New Dehli, India. 398 P.
Sanei Shariat Panahi, M. (1987). Botany.Tehran University Press. 314 P. [In Farsi]
Sansavinis, S. and Lougi, S. (1996). Performance of sweet cherry cultivar on new clonal rootstocks. Acta Horticulturae, 410: 363-371.
Tatari Vernosefaderani, M., Mosavi, C.A., and Bozari, N. (2012). Micropropagation of
some clonal rootstocks of stone fruits. Seed and Plant Improvment Journal, 28(1): 53-66. [In Farsi]
Zimmerman, R.T. (1993). Factors affecting in vitro propagation of apple cultivars. Acta Horticulturae, 131: 263-270.