Document Type : English Articles


1 Ph.D. Student Horticultural Sciences, Department of Horticultural Sciences, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran

2 Associate Professor, Department of Horticultural Sciences, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran

3 Professor, Department of Horticultural Sciences, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran


Introduction:Adventitious root cultures of medicinal plants are a source of secondary metabolites of pharmaceutical importance, and are considered as an alternative method for clonal propagation and germplasm conservation in medicinal plants.Chicory (Cichorium intybus L.) is a medicinal plant from Asteraceae and isused in traditional medicine to promote appetite and digestion. This plant contains many important metabolites including chicoric asid, inulin, scoline, coumarin and flavonoids. In the current research, an efficient protocol has been developed for adventitious root culture on MS medium supplemented with different concentrations of Indole-3-acetic acid (IAA) and α-Naphthalene acetic acid (NAA).
Materials and Methods:The seeds were surface-sterilized with 50 ml l−1 sodium hypochlorite for 20 min, subsequently with 700 ml l−1 ethanol for 90 s. The surface-sterilized seeds were inoculated against the MS medium and cultures were incubated at 25 ±2 C under fluorescent light for a cycle of 16 h light and 8 h dark per day. The leaves explants of 28-day-old in vitro plantlets were used as explants. For root initiation, IAA (0, 0.2, 0.4 and 0.6 mg l-1) and NAA (0, 0.5, 1 and 1.5 mg l-1) were used. After four weeks, the well-established roots were separated. To determine the best medium of composition for growth of roots, approximately 100 mg fresh weight of adventitious roots were cultured in MS liquid medium with different concentrations of IAA (0, 0.5, 1 and 1.5 mg 1-1) and NAA (0, 0.5, 1 and 1.5 mg 1-1).
Results and Discussion:According to the results, among the different concentrations of IAA, the highest root induction (72.5 percent), root number (4.75), and root branch (10.08) were exhibited by 1.5 mg/L IAA. Among different NAA levels, the highest root induction (88.88 percent), and root number (8.04) were observed in 1.5 mg/L NAA and was not significantly different from 0.5 and 1.5 mg/L NAA. This hormone at concentration of 1.5 mg/L, induced the highest root branching (18.42 per explant). The highest fresh weight (0.74 g) and dry weight (0.062 g), growth index (6.51), and phenol (4.1 mg/g DW) were obtained in MS liquid medium containing 0.5 mg 1-1 NAA in combination with 0.5 mg 1-1 IAA, and Flavonoid content in 270, 300 and 330 nm wavelengths was higher (60.26, 85.88 and 98.53 µg g-1 DW) in the roots obtained from 1 mg l−1 of NAA in combination with 1 mg l−1 of IAA. Increasing NAA concentrations induced callus mediated root formation and produced a lower number of adventitious roots. By using IAA, adventitious roots were initiated, but the frequency and average number of roots initiated were lower when compared with NAA.
Conclusion: Adventitious roots obtained by different concentration of auxins are a suitable tool for the production of plant secondary metabolites due to their genetic stability, and generally, show a fast growth rate. This study describes the protocol for adventitious root induction which could further be useful for the production of secondary metabolites and biomass


Akashi, T., Ishizaki, M., Aoki, T., & Ayabe, S. I. (2005). Isoflavonoid production by adventitious-root cultures of Iris germanica (Iridaceae). Plant biotechnology, 22(3), 207-215. doi: 10.5511/plantbiotechnology. 22.207
Ali, H., Khan, M. A., Ullah, N., & Khan, R. S. (2018).
Impacts of hormonal elicitors and photoperiod regimes on elicitation of bioactive secondary volatiles in cell cultures of Ajugabracteosa.Journal of Photochemistry and Photobiology B: Biology, 183, 242-250. doi: 10.1016/j.jphotobiol.2018.04.044
Baque, M. A., Lee, E. J., & Paek, K. Y. (2010). Medium
salt strength induced changes in growth, physiology and secondary metabolite content in adventitious roots of Morindacitrifolia: the role of antioxidant enzymes and phenylalanine ammonia lyase. Plant Cell Reports, 29(7), 685-694. doi: 10.1007/s00299-010-0854-4
Carazzone, C., Mascherpa, D., Gazzani, G., & Papetti,
A. (2013). Identification of phenolic constituents in
red chicory salads (Cichoriumintybus) by high-performance liquid chromatography with diode array detection and electrospray ionisation tandem mass spectrometry. Food Chemistry, 138(2-3), 1062-1071. doi: 10.1016/j.foodchem.2012.11.060
Cova, C. M., Boffa, L., Pistocchi, M., Giorgini, S., Luque, R., & Cravotto, G. (2019). Technology and process design for phenols recovery from industrial Chicory (Chicoriumintybus) leftovers. Molecules, 24(15), 2681.doi: 10.3390/molecules24152681
Cui, X. H., Murthy, H. N., Wu, C. H., & Paek, K. Y. (2010). Adventitious root.suspension cultures of Hypericumperforatum: effect of nitrogen source on production of biomass and secondary metabolites. In vitro Cellular and Developmental Biology-Plant, 46(5), 437-444. doi: 10.1007/s11627-010-9310
Fathi, R., mohebodini, M., & Chamani, E. (2018). Optimization of hairy roots induction in chicory (Cichoriumintybus L.) and effects of auxin and carbon source on their growth. Iranian Journal
of Horticultural Science
, 49(3), 393-405. doi: 10.30479/ijgpb.2017.1491 [In Farsi with English abstract]
Georgiev, M. I., Pavlov, A. I., & Bley, T. (2007). Hairy root type plant in vitro systems as sources of bioactive substances. Applied Microbiology and Biotechnology, 74(6), 1175-85. doi: 10.1007/s00253-007-0856-5
Gerth, A., Schmidt, D., & Wilken, D. (2007). The production of plant secondary metabolites using bioreactors. Acta Horticulturae, 764, 95-104. doi: 10.17660/ActaHortic.2007.764.11
Hahn, E. J., Kim, Y. S., Yu, K. W., Jeong, C. S., & Paek, K. Y. (2003). Adventitious root cultures of Panax ginseng CV Meyer and ginsenoside production through large-scale bioreactor system. Journal of Plant Biotechnology, 5(1), 1-6. doi: 10.5511/plantbiotechnology.22.235
Han, L., Piao, X. C.,  Jiang, J., Jiang, X. L., Yin, C. R., & Lian, M. L. (2019). A high production of flavonoids and anthraquinones via adventitious root culture of Oplopanaxelatus and evaluating antioxidant activity. Plant Cell, Tissue and Organ Culture (PCTOC), 137(1), 173-179. doi: 10.1007/s11240-018-01543-w
Hazra, B., Sarkar, R., Bhattacharyya, S., & Roy, P. (2002). Tumour inhibitory activity of chicory root extract against Ehrlich ascites carcinoma in mice. Fitoterapia, 73(7-8), 730-733. doi: 10.1016/S0367-326X(02)00232-0
Hussein, S., Ling, A. P. K., Ng, T. H., Ibrahim, R., & Paek, K. Y. (2012). Adventitious roots induction of recalcitrant tropical woody plant, Eurycomalongifolia. Romanian Biotechnol Lett, 17(1), 7026-35. doi: 10.5511/plantbiotechnology.22.145
Hwang, H. J., Song, G., Kim, M. H., Do, S. G., & Bae, K. H. (2013). Increasement of antioxidative activity in Codonopsislanceolata adventitious root treated
by Methyl jasmonate and salicylic acid. Journal
of Plant Biotechnology
, 40(3), 178-183. doi: 10.5010/JPB.2013.40.3.178
Krizek, D. T., Britz, S. J., & Mirecki, R. M. (1998). Inhibitory effects of ambient levels of solar UV‐A and UV‐B radiation on growth of cv. New Red Fire lettuce. Physiologia Plantarum, 103(1), 1-7. doi: 10.1034/j.1399-3054.1998.1030101.x
Le, K. C., Im, W. T., Paek, K. Y., & Park, S. Y. (2018). Biotic elicitation of ginsenoside metabolism of mutant adventitious root culture in Panax ginseng. Applied Microbiology and Biotechnology, 102(4), 1687-1697. doi: 10.1007/s00253-018-8751-9
Lee, E. J., Park, S. Y., & Paek, K. Y. (2015). Enhancement strategies of bioactive compound production in adventitious root cultures of Eleutherococcuskoreanum Nakai subjected to methyl jasmonate and salicylic acid elicitation through airlift bioreactors. Plant Cell, Tissue and Organ Culture (PCTOC), 120(1), 1-10. doi: 10.1007/s11240-014-0567-4
Lee, Y. S., Yang, T. J., Park, S. U., Baek, J. H., Wu, S., & Lim, K. B. (2011). Induction and proliferation of adventitious roots from 'aloevera' leaf tissues for'invitro' production of aloe-emodin. Plant Omics, 4(4), 190. doi: 10.1007/s11240-018-01543-w
Lin, L., & Du, H. (2018). An anthraquinone
compound and its protective effects against homocysteine-induced cytotoxicity and oxidative stress. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 202, 314-318. doi: 10.1016/j.saa.2018.05.058
Moradi, F., Mehrjerdi, M. Z., Vahdati, K., & Hasanloo, T. (2019). Effect of different factors on induction of hairy roots in Iranian garlic. Plant Productions, 41(4), 43-54. doi: 10.22055/ppd.2018.22526.1487 [In Farsi with English abstract]
Murthy, H. N., Hahn, E. J., & Paek, K. Y. (2008). Adventitious roots and secondary metabolism. Chinese Journal of Biotechnology, 24(5), 711-716. doi: 10.1016/S1872-2075(08)60035-7
Nakayasu, M., Akiyama, R., Lee, H. J., Osakabe, K., Osakabe, Y., Watanabe, B., ..., & Mizutani, M. (2018). Generation of α-solanine-free hairy roots of potato by CRISPR/Cas9 mediated genome editing of the St16DOX gene. Plant Physiology and Biochemistry, 131, 70-77. doi: 10.1016/j.plaphy. 2018.04.026
Peng, Y., Sun, Q., & Park, Y. (2019). Chicoric acid promotes glucose uptake and Akt phosphorylation via AMP-activated protein kinase α-dependent pathway.  Journal of Functional Foods, 59, 8-15. doi: 10.1016/j.jff.2019.05.020
Perassolo, M., Cardillo, A. B., Mugas, M. L., Montoya, S. C. N., Giulietti, A. M., & Talou, J. R. (2017). Enhancement of anthraquinone production and release by combination of culture medium selection and methyl jasmonate elicitation in hairy root cultures of Rubiatinctorum. Industrial Crops and
 Products, 105, 124-132. doi: 10.1016/j.indcrop. 2017.05.010
Rose, R. J., Wang, X. D., Nolan, K. E., & Rolfe, B. G. (2006). Root meristems in Medicagotruncatula tissue culture arise from vascular-derived procambial-like cells in a process regulated by ethylene. Journal of Experimental Botany, 57(10), 2227-2235. doi: 10.1093/jxb/erj187
Rowinsky, E. K., Cazenave, L. A., & Donehower, R. C. (1990). Taxol: a novel investigational antimicrotubule agent.  JNCI: Journal of the National Cancer Institute, 82(15), 1247-1259. doi: 10.1093/jnci/82. 15.1247
Sanchez, M., Lozano, R., & Iglesias, I. (2019). Medicinal plants in the community of Madrid: A survey of their consumption. Farma Journal, 4(1), 230-230. doi: 10.5511/plantbiotechnology.22.207
Sato, F., Hashimoto, T., Hachiya, A., Tamura, K.
I., Choi, K. B., Morishige, T., ..., & Yamada,
Y. (2001). Metabolic engineering of plant alkaloid
biosynthesis. Proceedings of the National Academy of Sciences, 98(1), 367-372. doi: 10.1016/S1872-2075(08)60035-7
Sheen, J., Zhou, L., & Jang, J. C. (1999). Sugars
as signaling molecules. Current Opinion in Plant biology, 2(5), 410-418. doi: 10.1016/S1369-5266(99)00014-X
Siahmansour, Sh., Ismaili, A., & Nazarian Firouzabadi,
F. (2018). Effect of different elicitor treatments
on hairy root of medicinal plant poppies (Papaver somniferum
 L.). Plant Productions, 41(1), 29-42.‏
doi: 10.22055/ppd.2018.13548 [In Farsi with English abstract]
Soland, S. F., & Laima, S. K. (1999).Phenolics and cold tolerance of Brassica napus.Plant Agriculture, 1, 1-5. doi: 10.1016/j.jff.2019.05.020
Srivastava, M., Singh, G., Sharma, S., Shukla, S., & Misra, P. (2019). Elicitation enhanced the yield of glycyrrhizin and antioxidant activities in hairy root cultures of Glycyrrhizaglabra L. Journal of Plant Growth Regulation, 38(2), 373-384. doi: 10.1007/ s00344-018-9847-2
Vahabinia, F., Pirdashti, H., & Bakhshandeh, E. (2019). Environmental factors’ effect on seed germination and seedling growth of chicory (Cichoriumintybus L.) as an important medicinal plant. Acta Physiologiae Plantarum, 41(2), 1-13. doi: 10.1007/ s11738-019-2820-2
Yonemitsu, H., Shimomura, K., Satake, M., Mochida,
S., Tanaka, M., Endo, T., & Kaji, A. (1990). Lobeline production by  hairy  root  culture of  Lobelia inflata L. Plant Cell Reports, 9(6), 307-310. doi: 10.1007/BF00232857