References
Azimi-Gandomani, M., Dehdari, A., Faraji, H., Movahedi-Dehanavi, M. and AliNaghizadeh, M. )2013). Evaluation of chlorophyll fluorescence and physiological characteristics of spring rapeseed (Brassica rapa L.) cultivars under salt stress. Plant Productions, 35(4), 1-16 [In Farsi]
Bates, L. S., Waldren, R. P. and Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39, 205-207.
Boominathan, R. and Doran, P. M. (2002). Ni induced oxidative stress in roots of the Ni hyperaccumlator, Alyssum bertoloni. New Phytologist, 156(24), 202-205.
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254.
Cao, S., Yang, Z. and Zheng, Y. (2013). Sugar metabolism in relation to chilling tolerance of loquat fruit. Food Chemistry, 136(1), 139-143.
Cartes, P., Jara, A. A., Pinilla, L., Rosas, A. and Mora, M. L. (2010). Selenium improves the antioxidant ability against aluminum‐induced oxidative stress in ryegrass roots. Annals of Applied Biology, 156(2), 297-307.
Chance, B. and Maehly, A. C. (1995). Assays of catalases and peroxidases. Methods in Enzymology, 2, 764-775.
Chaovanalikit, A. and Wrolstad, R. E. (2004). Total anthocyanins and total phenolics of fresh and processed cherries and their antioxidant properties. Journal of Food Science, 69(1), 67-72.
Diao, M., Ma, L., Wang, J. W., Cui, J. X., Fu, A. F. and Liu, H. Y. (2014). Selenium promotes the growth and photosynthesis of tomato seedlings under salt stress by enhancing chloroplast antioxidant defense system. Journal of Plant Growth Regulation, 33(3), 671-682.
Djanaguiraman, M., Devi, D. D., Shanker, A. K., Sheeba, J. A. and Bangarusamy, U. (2005). Selenium–an antioxidative protectant in soybean during senescence. Plant and Soil, 272(1-2), 77-86.
Dubey, R. S. (2005). Photosynthesis in plants under stress full conditions. In M. Pessarakli (ed), Photosynthesis(pp. 717-718(. New York, USA: CRC Press.
DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. and Smith, F. (1956). Colorometric method for determination of sugars and related substances.
Analytical Chemistry, 28(3), 350-356.
Elguera, J. C. T., Barrientos, E. Y., Wrobel, K. and Wrobel, K. (2013). Effect of cadmium (Cd II), selenium (Se IV) and their mixtures on phenolic compounds and antioxidant capacity in Lepidium sativum. Acta Physiologiae Plantarum, 35(2),431-441.
Filek, M., Zembala, M., Hartikainen, H., Miszalski, Z., Kornas, A., Wietecka-Posłuszny, R. and Walas, P. (2009). Changes in wheat plastid membrane properties induced by cadmium and selenium in presence/absence of 2, 4-dichlorophenoxyacetic acid. Plant Cell, Tissue and Organ Culture, 96(1), 19-28.
Francois, L. E. (1996). Salinity effects on four sunflower hybrids.
Agronomy Journal, 88(2), 215-219.
Gill, S. S. and Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12), 909-930.
Hashem, H. A., Hassanein, R. A., Bekheta, M. A. and El-Kady, F. A. (2013). Protective role of selenium in canola Brassica napus L. plant subjected to salt stress. The Egyptian Journal of Experimental Biology Botany, 9(2), 199-211.
Hassanuzzaman, M., Hossain, M. A. and Fujita, M. (2011). Selenium-induced up-regulation of the antioxidant defense and methylglyoxal detoxification system reduces salinity-induced damage in rapeseed seedlings. Biological Trace Element Research, 143(3), 1704-1721.
Hawrylak-Nowak, B. (2009). Beneficial effects of exogenous selenium in cucumber seedlings subjected to salt stress. Biological Trace Element Research, 132(1-3), 259-269.
Hawrylak-Nowak, B. (2015). Selenite is more efficient than selenate in alleviation of salt stress in lettuce plants. Acta Biologica Cracoviensia Series Botanica, 57(2), 49-54.
Hoque, M. A., Okuma, E., Banu, M. N. A., Nakamura, Y., Shimoishi, Y. and Murata, Y. (2007). Exogenous proline mitigates the detrimental effects of salt stress more than exogenous betaine by increasing antioxidant enzyme activities. Journal of Plant Physiology, 164(5), 553-561.
Jiang, C., Zu, C., Lu, D., Zheng, Q.,
Shen, J.,
Wang, H. and
Li, D. (2017). Effect of exogenous selenium supply on photosynthesis, Na
+ accumulation and antioxidative capacity of maize (
Zea mays L.) under salinity stress.
Scientific Reports, 7, 42039.
Kachout, S. S., Hamza, K. J., Bouraoui1, N. K., Leclerc, J. C. and Ouerghi, Z. (2013). Salt-induced changes in antioxidative enzyme activities in shoot tissues of two atriplex varieties. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 41(1), 115-121.
Kong, L., Wang, M. and Bi, D. (2005). Selenium modulates the activities of antioxidant enzymes, osmotic homeostasis and promotes the growth of sorrel seedlings under salt stress. Plant Growth Regulation, 45(2), 155-163.
Kumar, M., Bijo, A. J., Baghel, R. S., Reddy, C. R. K. and Jha, B. (2012). Selenium and spermine alleviate cadmium induced toxicity in the red seaweed Gracilaria dura by regulating antioxidants and DNA methylation. Plant Physiology and Biochemistry, 51, 129-138.
Liu, D., Li, H., Wang, Y., Ying, Z., Bian, Z., Zhu, W. and Jiang, D. (2017). How exogenous selenium affects anthocyanin accumulation and biosynthesis-related gene expression in purple lettuce. Polish Journal of Environmental Studies, 26(2), 717-722.
Makkar, H. P. S., Blummolel, M., Borrowy, N. K. and Becker, K. (1993). Gravimetric determination of tannins and their correlations with chemical and protein precipitation methods. Journal of Science and Food Agriculture, 61(2), 161-165.
Nakano, Y. and Asada, K. (1987). Purification of ascorbate peroxidase from spinach chloroplasts: it’s activation in ascorbate-depleted medium and reactivation by monodehydro-ascorbate radical. Plant Cell Physiology, 28(1), 131-140.
Rios, J. J., Blasco, B., Cervilla, L. M., Rosales, M. A., Sanchez‐Rodriguez, E., Romero, L. and Ruiz, J.M. (2009). Production and detoxification of H2O2 in lettuce plants exposed to selenium. Annals of Applied Biology, 154(1), 107-116.
Rosa, R., Prado, C., Podazza, G., Interdonato, R., Gonzalez, J. A., Hilal, M. and E. Prado, F. (2009). Soluble sugars-metabolism, sensing and abiotic stress. Plant Signaling and Behavior, 4(5), 388-393.
Shahbaz, M., Ashraf, M., Akram, N.A., Hanif, A., Hameed, S., Joham, S. and Rehman, R. (2011). Salt-induced modulation in growth, photosynthetic capacity, proline content and ion accumulation in sunflower Helianthus annuus L. Acta Physiologiae Plantarum, 33(4), 1113-1122.
Sonobe, K., Hattori, T., An, P., Tsuji, W., Eneji, E., Tanaka, K. and Inanaga, S. (2009). Diurnal variations in photosynthesis, stomatal conductance and leaf water relation in sorghum grown with or without silicon under water stress. Journal of Plant Nutrition, 32(3), 433-442.
Torabian, S., Zahedi, M. and Khoshgoftarmanesh, A. (2016). Effect of foliar spray of zinc oxide on some antioxidant enzymes activity of sunflower under salt stress. Journal of Agricultural Science and Technology, 18(4), 1013-1025.
Treutter, D. (2006). Significance of flavonoids in plant resistance: A review. Environmental Chemistry Letters, 4(3): 147-157.
Umar, M. and Siddiqui, Z. S. (2018). Physiological performance of sunflower genotypes under combined salt and drought stress environment.
Acta Botanica Croatica, 77(1), 36-44.
© 2020 by the authors. Licensee SCU, Ahvaz, Iran. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0 license) (http://creativecommons.org/licenses/by-nc/4.0/)