Document Type : Research Paper
Authors
1 M.Sc. Student of Horticultural Sciences, Department of Horticultural Sciences, Faculty of Agriculture and Natural Resources, Arak University, Arak, Iran
2 Assistant Professor, Department of Horticultural Sciences, Faculty of Agriculture and Natural Resources, Arak University, Arak, Iran
3 Associate Professor, Department of Horticultural Sciences, Faculty of Agriculture and Natural Resources, Arak University, Arak, Iran
Abstract
Abstract
Background and Objectives
Lilium is one of the most important bulbous plants produced as cut flowers and pot plants. In order to increase the quality of flowers, all plants should be fertilized correctly. Potassium is one of the elements that play a very important role in the quality and performance of ornamental flowers. Nano fertilizers increase nutrient efficiency, reduce soil toxicity, minimize the potential negative effects associated with overdosage, and are an effective step toward achieving sustainable and environmentally sustainable agriculture. The present study was undertaken to investigate the effect of potassium and nano-potassium fertilizers on the physiological and biochemical characteristics of Asiatic Lilium Hybrid cv. Tresor.
Materials and Methods
In the current study, the effect of foliar spraying of different concentrations of potassium (0, 1, 2, and 4 mM) and nano-potassium (0, 0.5, 1, and 2 mM) was investigated on qualitative and quantitative traits of lily cut flower "Tresor" at the four stages of pre-harvest. The traits included a number of buds and leaves, bud length, bud diameter, stem length, stem diameter, length and width of leaves, fresh and dry weight of stems and leaves, flower longevity, peduncle length and diameter, dry matter percent of stems and leaves, ionic leakage, chlorophyll index and content of carotenoids, Flavonoids, anthocyanins, and chlorophyll a, b, and total.
Results
The result showed that there are significant differences between different spraying treatments and the number of buds, stems fresh weight, and ionic leakage. The highest stem fresh weight was observed by the 0.5mM nano-potassium, while the largest number of buds, the highest cells stability, and the lowest ionic leakage were achieved by the 4mM potassium. In regard to the traits of chlorophyll content, Carotenoid, Anthocyanin, and Flavonoid, there were no significant differences between the treatments of potassium and the nano-potassium. Also, the 4mM potassium and the 2mM nano-potassium showed the longest vase life. Considering the fact that the number of buds in the Lily is the most important trait, the 2 mM nano-potassium is recommended as the best treatment for spraying to feeding potassium.
Discussion
The foliar application of potassium and nano-potassium enhanced stem fresh weight and vase life of cut flower lilies and reduced ionic leakage compared to the control. Also, the largest number of buds was achieved by the 4 mM potassium. These results are in agreement with previous studies on carnation, Narcissus, and lily. Potassium is vital to many plant processes. Potassium plays a major role in the transport of water and nutrients throughout the plant in the xylem. Potassium is required for every major step of protein synthesis. Also, the enzyme responsible for the synthesis of starch (starch synthetase), which is activated by K. Briefly potassium, plays significant roles in enhancing the crop quality. High levels of available K improve the physical quality, disease resistance, and shelf life of crops.
Keywords
Main Subjects