اثر غلظت‌های مختلف سیتوکینین و اکسین بر عملکرد و اجزاء عملکرد ذرت دانه‌ای (.Zea mays L) در شرایط شور

نوع مقاله: علمی - پژوهشی

نویسندگان

1 دانشجوی دکتری فیزیولوژی گیاهان زراعی، گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه شهید چمران اهواز

2 استاد، گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه شهید چمران اهواز

3 دانشیار، گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه شهید چمران اهواز

چکیده

جهتبررسیاثر مصرفسیتوکینین (صفر، 75 و 100 میلی‌گرم در لیتر بنزیل آدنین) و اکسین (صفر، 15 و 20 میلی‌گرم در لیتر ایندول بوتریک اسید) برعملکردواجزاء عملکردذرت دانه‌ای (.Zea mays L) در شرایط شور آزمایشی در سال 1393 درمرکز تحقیقات و آموزش کشاورزی و منابع طبیعی بوشهر به‌صورت فاکتوریلدر قالب طرحبلوک‌هایکاملتصادفیبا سهتکراراجراگردید. نتایج تجزیه واریانس نشان داد که بیشترین میزان عملکرد دانه با مصرف سیتوکینین و اکسین به‌ترتیب با غلظت 100 و 20 میلی‌گرم در لیتر به‌دست آمد. الگوی کاشت به‌صورت کف فارو بود. صفات ارتفاع بوته، قطر ساقه، طول بلال، تعداد ردیف دانه در بلال و عملکرد بیولوژیک با محلول‌پاشی سیتوکینین تا 100 میلی‌گرم در لیتر افزایش یافتند. در تیمار بدون مصرف اکسین بیشترین تعداد دانه در ردیف بلال با محلول‌پاشی سیتوکینین با غلظت 75 میلی‌گرم در لیتر به‌دست آمد در حالی‌که در شرایط مصرف اکسین با غلظت 15 و 20 میلی‌گرم در لیتر بیشترین تعداد دانه در ردیف بلال به تیمار 100 میلی‌گرم در لیتر سیتوکینین اختصاص داشت. در هر سه سطح سیتوکینین مصرف غلظت‌های مختلف اکسین وزن هزار دانه را افزایش داد. بیشترین میزان شاخص برداشت برابر با 30 با مصرف 20 میلی‌گرم در لیتر اکسین به‌دست آمد. نتایج این آزمایش نشان داد که مصرف سیتوکینین با غلظت 100 میلی‌گرم در لیتر و مصرف اکسین با غلظت 20 میلی‌گرم در لیتر اثرات شوری بر گیاهکاهش یافته و عملکرد دانه افزایش یافت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effects of Different Concentrations of Cytokinin and Auxin Hormones on Yield and Yield Components of Grain Maize (Zea mays L.) in Salinity Conditions

نویسندگان [English]

  • D. Davani 1
  • M. Nabipour 2
  • H. Roshanfekr Dezfouli 3
1 Ph.D. Student of Plant Physiology, Department of Agronomy and Plant Breeding, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
2 Professor, Department of Agronomy and Plant Breeding, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
3 Associate Professor, Department of Agronomy and Plant Breeding, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
چکیده [English]

Background and Objectives
Maize (Zea mays L.) belongs to the family of Poaceae and it is the third important cereal crop of the World after wheat and rice. Salinity is one of the major environmental factors limiting plant growth and productivity. Maize is sensitive to salinity. Ba is one of the cytokinins known to significantly improve the growth of crop plants grown under salinity. IBA is also known to play a significant role in plant tolerance to salt stress. However, little information appears to be available on the relationship between salinity tolerance and auxin or cytokinins levels in plants. In this respect, the objective of this study was to study the effects of sprying of cytokinin and auxin hormones on yield and yield components of grain maize in saline conditions.
Materials and Methods
To study the effects of cytokinin (0, 75 and 100 mg.l-1) and auxin (0, 15, 20 mg.l-1) hormones on yield and its components of grain maize (Zea mays L.) under saline conditions, an experiment was conducted during 2013 in the research station of Bushehr Agricultural and Natural Resources Research Center in a factorial design based on randomized complete design with three replications. Cytokinin (Benzyl Adenine, Merck) and Auxin (Indole-3-Butiric Acid, Merck) were sprayed on the entire plant in the evening. Data was analyzed using the SAS (Ver.9.1) and significance of the differences between the means was conducted using LSD test.
Results
Results of Analysis of Variance showed that the highest grain yield was obtained by application of cytokinin and auxin with concentrations of 100 and 20 mg.l-1, respectively. The characteristics of plant height, stem diameter, ear length, row number per Ear and biological yield increased by sprying 100 mg.l-1 cytokine. In the treatment of without spraying auxin, the highest kernel number per row was obtained by spraying cytokinin at 75 mg.l-1 while in the treatment spraying auxin at 15 and 20 mg.l-1 the highest kernel number per row was obtained by sprying 100 mg.l-1 cytokinin. In three levels of cytokinin, application of auxin increased 1000 kernel weight. The highest harvest index was obtained by application of auxin at 20 mg.l-1.
Discussions
It has been found that both auxin and cytokinin may have a role in mediating cell division in the endosperm during the grain-filling stage. Therefore, these hormones might regulate the grain capacity (sink size) for the accumulation of carbohydrates. It was found that IAA actively participated in the mobilization and accumulation of carbohydrates in seeds. Auxin and cytokinins hormones are also thought to be involved in regulating sink strength either by mediating the division and enlargement of endosperm cells or by controlling the import of assimilates to the sink. Results of this study demonstrated that sprying cytokinin at 100 mg.l-1 and auxin at 20 mg.l-1 reduced the effects of salinity on yield and increased the grain yield.
 

کلیدواژه‌ها [English]

  • Hormone
  • Furrow planting
  • Foliar sprying
  • Growth stage
References
Ashraf, M., Athar, H.R., Harris, P.J.C., and Kwon, T.R. (2008). Some prospective strategies for improving crop salt tolerance. Advances in Agronomy, 97: 45-110.
Awan, I.U., Baloch, M.S., Sadozai, N.S., and Sulemani, M.Z. (1999). Stimulatory effect of GA and IAA on ripening process, kernel development and quality of rice. Pakistan Journal of Biological Sciences, 2: 410-412.
Darussalam Cole, M.A. and Patrick J.W. (1998). Auxin control of photoassimilate transport to and within developing grains of wheat. Australian JournalofPlant Physiology. 25: 69-77.
Emam, Y., Karimzade- Soressjani, H., Mouri, S., and Maghsoudi, K. (2013). Reaction auxin and cytokinin concentrations of functional bread wheat and durum in terminal drought. Journal of Crop Production and Processing, 3(8): 93-103. [In Farsi]
Espinoza, L. and Ross, J. (1996). Corn production. Arkansas, Arkansas Univ. pp: 5-10.
FAO. (2013). World food and agriculture. Food and Agricultural Organization PP 132. http:// www. Fao.Org/economic/ess/ess- publication/ess- yearbook/en/#.VNh3lyx8XGg. (Accessed September 2015)
Garsia, R. and Hanowy, J.J. (1996). Foliar fertilization of soybean during the seed filling period. Agronomy Journal, 68: 653-657.
Hansen, H.K. and Grossmann, K. (2000). Auxin-induced enthylene triggers abscisic acid biosynthesis and growth inhibition. Plant Physiology, 124: 1437-1448.
Hashemi- Dezfuli, S., Alami, S., Siadat, S.A., and Komaili, M. (2001). Effect of planting date on yield of two varieties of sweet corn on the weather conditions in Khuzestan. Journal of Agriculture Science, 32: 681-689. [In Farsi]
Iqbal, M. and Ashraf, M. (2005). Presowing seed treatment with cytokinins and its effect on growth, photosynthetic rate, ionic levels and yield of two wheat cultivars differing in salt tolerance. Journal of Integrative Plant Biology, 47: 1315-1325.
Iqbal, M. and Ashraf, M. (2010). Gibberellic acid mediated induction of salt tolerance in wheat plants: Growth, ionic partitioning, photosynthesis, yield and hormonal homeostasis. Environmental and Experimental Botany, 86:76-85.
Kaya, C., Higgs, D., Ince, F., Amador, B.M., Cakir, A., and Sakar, E. (2003). Ameliorative effects of potassiumphosphate on salt-stressed pepper and cucumber. Journal of Plant Nutrition, 26: 807-820.
Kaya, C., Tuna, A.L., and Okant, A.M. (2010). Effect of foliar applied kinetin and indole acetic acid on maize plants grown under saline conditions. Turkish Journal of Agriculture and Forestry, 34: 529-538.
Keshavarzi, M.S., Jafari- Haghighi, B., and Bagheri, A. R. (2013). Evaluation the effect of auxin and gibberellin on quantitative and qualitative characteristics of forage corn. Journal of Plant Ecophysiology, 5(15): 26-35. [In Farsi]
Koocheki, A. and Banayan, M. (1995). Crop yield physiology. Jihad-e-Daneshgahi of Mashhad University Publications. Mashhad, Iran. 380 P. [In Farsi]
Koocheki, A. and Sarmad-Nia, Gh. (2012). Crop physiology. Jihad-e-Daneshgahi of Mashhad University Publications. Mashhad, Iran. 400 P. [In Farsi]
Kuiper, D., Schuit, J., and Kuiper, P.J.C. (1990). Actual cytokinin concentrations in plant tissue as an indicator for salt resistance in cereals. Plant Soil, 123: 243-250.
Lacerda, C.F.D., Cambraia, J., Oliva, M.A., Ruiz, H.A., and Prisco, J.T. (2003). Solute accumulation and distribution during shoot and leaf development in two sorghum genotypes under salt stress. Environmental and Experimental Botany, 49: 107-120.
Letham, D.S. (1978). Cytokinins. In: Letham D.S., Goodwin, P.B, Higgins T.J.V (eds) Phytohormones and related compounds. Vol 1. Elsevier, Amsterdam. pp: 205-243.
Machanda, G. and Garg, N. (2008). Salinity and its effects on the functional biology of legumes. Agricultural Plant Physiology, 30: 595-618.
Mervat, Sh.S., Mona, G.D., Bakry, B.A., and El-Karamany, M.F. (2013). Synergistic effect of indole acetic acid and kinetin on performance, some biochemical constituents and yield of faba bean plant grown under newly reclaimed sandy soil. World Journal of Agricultural Sciences, 9(4): 335-344.
Mohabbati, F., Moradi, F., Paknejad, F., Vazan, S., Habibi, D., Behneya, S., and Pour Irandoost, H. (2012). Effect of foliar application of auxin, absisic acid and cytokinin hormones on grain yield and yield components of three rice (Oryza sativa L.) genotypes under low temperature stress conditions. Iran Journal of Field Crop Science, 14(1): 58-71. [In Farsi]
Molassiotis, A.N., Sotiropoulos, T., Tanou, G., Kofidis, G., Diamantidis, G., and Therios, I. (2006). Antioxidant and anatomical responses in shoot culture of the apple rootstock MM 106 treated with NaCl, KCl, mannitiol or sorbitol. Biologia Plantarum, 50(1): 61-68.
Mozafar, A. and Goodin, J.R. (1986).Salt tolerance of two different drought-tolerant wheat genotypes during germination and early seedling growth. Plant and Soil Science, 96: 303-316.
Naeem, M., Bhatti, I., Ahmad, R.H., and Ashraf, Y.M. (2004). Effect of some growth hormones (GA3, IAA and kinetin) on the morphology and early or delayed initiation of bud of lentil (Lens culinaris Medik). Pakistan Journal of Botany, 36: 801-809.
Noormohamadi, Gh., Siadat, A., and Kashani, A. (2009). Cereal agronomy. Shahid Chamran University of Ahvaz Press. 441 P. [In Farsi]
Nordstrom, A., Tarkowski, P., Tarkowska, D., Norbaek, R., Astot, C., Dolezal, K., and Sandberg, G. (2004). Auxin regulation of cytokinin biosynthesisin Arabidopsis thaliana: A factor of potential importance for auxin-cytokinin regulated development. Proceedings of the National Academy of Sciences of the USA, 101: 8039-8044.
Porter, P.M. and Hichs, D.K. (1997). Corn response to row width and plant population in the nithern cornbelt. Journal of Production Agriculture, 10(2): 293-300.
Rajala, A. and Peltonen-saninio, P. (2001). Plant growth regulator effects on spring cereal root and shoot growth. Agronomy Journal, 93: 936-943.
Rezvani Moghaddam, P. and Koocheki, A. (2001). Research history on salt affected lands of Iran: Present and future prospects-Halophytic ecosystem. International Symposium on Prospects of Saline Agriculture in the GCC Countries, Dubai, UAE.
Salardini, A.A. (2008). Soil fertility. University of Tehran Press, Tehran. 434 P. [In Farsi]
Siadat, S.A. and Hasemi-Dezfouli, S.A. (2000). Effect of plant density and planting pattern of grain yield and yield components of corn (Zea mays L.) Hybrid KSC 704. JournalofAgriculturalScience, 9: 39-48.
Tarakhovaskaya, E.R., Kang, E.J., Kim, K.Y., and Garbary, D.J. (2013). Influence of phytohormones on morphology and chlorophyll a fluorescence parameters in embryos of Fucus vesiculosus L. Russian JournalofPlant Physiology, 60: 176-183.
Taslima, K., Hossain, F., and Ara, U. (2011). Effect of indole-3-acetic acid (IAA) on biochemical responses of cowpea (Vigna unguiculata (L.) Walp) var. bari fellon-1. Bangladesh JournalofScientificandIndustrial Research, 46: 77-82.
Thomas, J.C., Mcelwain, E.F., and Bohnert, H. J. (1992). Convergent induction of osmotic stress-responses: Abscisic acid, cytokinin, and the effects of NaCl. Plant Physiology, 100: 416-423.
Xie, Z., Jiang, D., Cao, W., Dai, T., and Jing, Q. (2003). Relationships of endogenous plant hormones to accumulation of grain protein and starch in winter wheat under different post-anthesis soil water statuses. Plant Growth Regulation, 41: 117-127.
Xu, N., Yrle, K., Miler, P.O., and Cheilch, N. (2004). Co regulation of ear growth and internode elongation in corn. Plant Growth Regulation, 44: 231-241.
Yang, J., Wang, Z., Zhu, Q., and Lang, Y. (1999). Regulation of ABA and GA to rice grain filling. Acta Agronomy Sinica, 25: 341-348.
Yang, J., Zhang, J., Wang, Z., and Zhu, Q. (2003). Hormones in the grains in relation to sink strength and postanthesis development of spikelets in rice. Plant Growth Regulation, 41: 185-195.
Yazdi-Motlagh, A., Khavari-Khorasani, S., Bakhtiari, S., and Musa-Abadi, J. (2012). Effect of planting pattern on Morphophysiologic characteristics, yield and yield components of forage maize varieties (Zea mays L.) in saline conditions. Journal of Agricultural Ecology, 4: 324-327. [In Farsi]