Document Type : Research Paper

Authors

1 Previous MSc. Student, Department of Agronomy, Shahid Chamran University of Ahvaz

2 Assistant professor, Department of Agronomy and Plant Breeding, Shahid Chamran University of Ahvaz, Iran

3 Assistant Professor, Agricultural and Natural Resources Research Center of Ahvaz

Abstract

 To investigate water deficit stress influence on stem elongation, flowering stage and some physiological characters of three canola (Brassica napus) cultivars including total dry matter, grain yield, total soluble sugars and starch, proline and osmotic potential this study was carried out in the green house of Shahid Chamran University of Ahvaz in 2008-2009 growing season. The experiment was factorial based on complete randomized design arrangement in three replications. The first factor comprised cultivars (including Hyola 308, Hyola 401 and RGS003) and the second factor was water deficit stress including water deficit in the early stem elongation to early-flowering stage (D1), early-flowering stage to early sac appearance (D2), early stem elongation to early sac appearance (D3) and normal irrigation conditions (D4). The results showed that the lowest and the highest reduction in shoot dry matter and grain yield was measured in Hyola 401 and Hyola308, respectively. The lowest shoot dry matter was in Hyola 308 (from the early stem elongation to early sac emergence stages) (22 grams per plant) and the highest shoot dry matter was in Hyola 401 (74 grams per plant) in normal conditions. In the stress conditions, shoot dry matter in all cultivars decreased. The amount of reduction during the flowering stage was more than early stem elongation stage showing more sensitivity of flowering stage to the stem elongation stage in water deficit stress. The interaction of water stress and variety showed significant differences in total soluble sugar, starch, proline, osmotic potential (P≤ 0.01), shoots dry matter and grain yield (P≤ 0.05). Furthermore, in the stress conditions participation in osmotic regulation process and reduction of negative effects of water deficit stress increased the amount of the total soluble sugars and proline of leaves. The lowest leaf osmotic potential (-2.23 Mpa) and the highest osmotic potential (-1.65 Mpa) were determined in Hyola 401, and Hyola 308 for D3 and D4 respectively. Decrease (become more negative) of osmotic potential because of more tolerance of Hyola 401 to water deficit stress was also assessed. According to the results of this study, Hyola 401, RGS003 and Hyola 308 were assessed for tolerance, semi tolerance and susceptibility to water deficit stress respectively.

Keywords

Main Subjects

  1. منابع

    1. خواجه‎پور، م. ر. 1377. تولید نباتات صنعتی. انتشارات جهاد دانشگاهی. دانشگاه صنعتی اصفهان، صص: 45-47.
    2. حسیبی، پ.، م. نبی پور و مرادی، ف. 1389. بررسی نقش برخی محافظت کننده های سرمایی در القای تحمل تنش دمای پایین به گیاهچه های برنج. مجله الکترونیک تولید گیاهان زراعی، 3 (1): 39-56.
    3. حسینی، م. 1388. تاثیر تنش کمبود آب بر برخی خصوصیات فیزیولوژیکی سه ژنوتیپ کلزا در شرایط آب و هوایی اهواز. پایان‎نامه کارشناسی ارشد. دانشگاه شهید چمران اهواز، 137 ص.
    4. قربانی جاوید، م. اکبری، ق. آ. مرادی، ف. و الله آبادی، ا. 1386. ارزیابی ماده خشک، رابطه آبی و تنظیم اسمزی دو ژنوتیپ یونجه یکساله تحت تنش خشکی. فصلنامه علمی- پژوهشی تحقیقات مرتع و بیابان ایران، 14(3): 351 -336.
    5. گوشه، م. 1382. گزارش نهایی تعیین عمق و دور آبیاری در زراعت کلزا. مرکز تحقیقات کشاورزی و منابع طبیعی خوزستان، صص: 1 و 11.
    6. Angadi, C.V., Cutforth, H.W., Conkey, B.G.M., and Gan, Y. 2002. Canola yield formation under different plant population and water use levels. In proc. Soils and Crop Work Shop 54: 123-145.
    7. Ashraf, M., Nazir, N., and McNeilly, T. 2001. Comparative salt tolerance of amphidiploid and diploid Brassica species. Plant Science, 160: 683-689.
    8. Bates, L.S., Waldern, R.P., and Tear, I.D. 1973. Rapid determination of fre proline for water stress studies. Plant soil, 39: 205-207.
    9. Cechin, I., Rossi, S., Oliveira, V., and Fumis, T. 2006. Photosynthetic responses and proline content of mature and young leaves of sunflower plants underwater deficit. Photosynthetica, 44(1): 143-146.
    10. Ghobadi, M., Bakhshande, M., Fathi, G., Gharine, M. H., Alamisaeed, K., Naderi, A., and Ghobadi, M.E. 2006. Short and long periods of water stress during different growth stages of canola (Brassica napus L.): effects on yield, yield components, seed oil and protein contents. Journal of Agronomy, 5(2): 336-341.
    11. Hidekazu, S., Kazuo, I., and Kunihiko, O. 1998. Freezing tolerance and soluble sugar contents affected by water stress during cold-acclimation and de-acclimation in cabbage seedlings. Scienta Horticulture, pp: 161-169.
    12. Kishor, P.B.K., Sangama, S., Amrutha, R.N., Laxmi, P.S., Naidu, K.R., and Rao, K.S. 2005. Regulation of proline in higher plants: its implications in plant growth and abiotic stress tolerance. Current Science, 88(3): 424-438.
    13. Lawlor, D.W., and Cornic, G. 2002. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant, Cell and Environment, 25: 275 – 294.
    14. Maggio A, Pscale, S.D., Ruggiero, C., and Barbeieri, G. 2005. Physiological response of field-grown cabbage to salinity and drought stress. European Journal of Agronomy, 23: 57- 67.
    15. Martinez, J.P., Lutls, S., Schanck, A., and Bajji, M. 2004. Is osmotic adjustment required for water stress resistance in the Mediterranean shrub Atriplex halmius L. Plant Physiology, 161: 1041-1051.
    16. Moradshahi, A., Salehi, E., and Kholdebarin, B. 2004. Some physiological responses of canola (Brassica napus L.) To water deficit stress under laboratory conditions. Iranian Journal of Science & Technology, Transaction A, 28, A1.
    17. Rao, I.M., Sharp, R.E., and Boyer, S.S. 1987. Leaf magnesium alters photosynthetic response to low water potentials in sunflower, Plant Physiology, 84: 1214.
    18. Richard, R.A., and Thurling, N. 1987. Variation between and within spieces of rape seed (Brassica compestris and Brassica napus L.) in response to drought stress and growth and development under natural drought stress. Australian Journal Agriculture Research, 29: 479-490.
    19. Shlegl, H.G. 1986. Die verwertung orgngischer souren durch chlorella lincht. Planta. pp: 47-51.
    20. Thurling, N., and Kaveeta, R. 1992. Yield improvement of oilseed rape (Brassica napus L.) in a low rainfall environment, agronomic performance of lines selected on the basis of preanthesis development, Australian Journal of Agricultural, Research, 439: 623-633.
    21. Wright, P.R., Morgan, J.M., Jossop, R.S., and Cass, A. 1995. Comparative adaptation of canola (Brassica napus L.) and Indian mustard (Brassica juncea L.) to wtater deficit. Field Crops Research., 42: 1-13.
    22. Yamaguchi-Shinozaki, K., Kasuga, M., Liu, Q., Akashima, K.N., and Sakuma, Y. 2002. Biological mechanisms of drought stress response. JIRCAS Working Report, pp: 1-8.