Davood Rahimi Monfared; Mohsen Saeidi; Saeid Jalali Honarmand
Abstract
Introduction
Legumes are a vital source of plant-based food, second only to cereals. Among them, Chickpea (Cicer arietinum L.) holds significant importance, particularly in semi-arid ...
Read More
Introduction
Legumes are a vital source of plant-based food, second only to cereals. Among them, Chickpea (Cicer arietinum L.) holds significant importance, particularly in semi-arid regions such as western Iran, where it is primarily cultivated under rainfed conditions. Chickpea is a valuable dietary component, particularly for low-income populations, as it is rich in protein (18-22%), unsaturated fatty acids (e.g. linoleic acid and oleic acid), and a good source of vitamins, such as riboflavin, niacin, thiamin, and folate (vitamin B9), and beta-carotene (a precursor of vitamin A) and minerals including calcium, magnesium, phosphorus, and potassium. In terms of total grain production in rainfed environments, chickpea ranks as the third most cultivated crop in Iran. Kermanshah province, with approximately 141,000 hectares dedicated to chickpea farming, leads in cultivation area. Despite this, the average yield of rainfed chickpea fields in Iran (480 kg/ha) lags significantly behind the global average (1,057 kg/ha). This disparity is primarily attributed to limited soil moisture and a lack of bioavailable nutrients. This study investigates the potential of iron, zinc, and boron chelates applied in both bulk and nanoparticle forms – to enhance chickpea grain yield and address nutritional deficiencies under rainfed conditions.
Materials and Methods
The experiment was conducted during the 2018-2019 growing season at the Agriculture and Natural Resources Campus of Razi University under rainfed conditions. A randomized complete block design with three replications was implemented. Fertilizer treatments were applied as foliar sprays in two growth stages: the beginning of vegetative growth and flowering. Treatments included bulk and nanoparticle chelates of iron, zinc, and boron at three concentrations (2, 4, and 8 g/l), their combinations and a control.
Results and Discussion
Soil analysis revealed deficiencies in bioavailable iron, zinc, and boron. The analysis of variance showed that both the type and concentration of fertilizers significantly affected grain yield and its components. All treatments, except boron fertilizer, caused a significant increase in grain yield compared to the control. The highest yield (814 kg/ha) was observed with the combined application of iron+zinc+boron at 8 g/l, resulting in 1,392 kg/ha grain yield and 3,287 kg/ha biomass. Other notable results included combinations of iron + zinc + boron (1,196 kg/ha), iron + zinc (1,108 kg / ha), and bulk zinc alone (1,053 kg/ha). Increasing fertilizer concentration positively influenced plant height, the number of pods per plant, grains per pod, total grains per plant, and 100-grain weight. Among all treatments, the concentration of 8 g/l consistently yielded the most significant improvements. While nanoparticle fertilizers performed well, bulk forms of iron and zinc proved equally, if not more, effective in enhancing grain yield. However, bulk fertilizers were superior in increasing plant height.
Conclusion
The study concludes that while both bulk and nanoparticle fertilizers of iron and zinc improve chickpea yield under rainfed conditions, nanoparticle fertilizers did not demonstrate a clear advantage over bulk forms. However, regarding plant height increase, bulk iron and zinc fertilizers were particularly effective. Considering reports of the higher efficiency of nanoparticles in irrigated environments, further research is necessary to determine conditions where nanoparticles may outperform bulk fertilizers in rainfed systems.