m fakhraei; r Tabar; m Sarsaiefi; a Fattie; Gh Abadozi; M Hajhasani; A Farhadi; Gh Khakizad; Z Azizi; B Samadi; M Kiani; A Mirakhorlee; N Foromadi; j Mzaffari; R Rafezi
Abstract
Background and Objectives Mulberry (Morus spp.) is a tree of the family of Moraceae. There are 24 species of Morus and one subspecies, with 100 known varieties. The various methods ...
Read More
Background and Objectives Mulberry (Morus spp.) is a tree of the family of Moraceae. There are 24 species of Morus and one subspecies, with 100 known varieties. The various methods used in classification of Morus were mainly based on the conventional systematic studies and agronomic characters. Despite the widespread genetic diversity in Iranian mulberry tree, so far, the identification of these trees has not been selection, introduction and cultivation. In order to identify mulberry trees during 1387-1392, they were collected from different provinces (Tehran, Mazandaran, Kurdistan, Markazi, Khuzestan, Fars, West Azarbaijan, Isfahan, Hamedan, Khorasan, South Khorasan, Semnan, Ardabil, Kohgiluyeh and Boyer-Ahmad, East Azerbaijan) according to the IPGRI (International Institute for genetic reserves). The aim of this study was evaluation of genetic diversity and mulberry clustering genotypes, on the basis and quantitative characteristics and to determine the genetic distance between them. Material and Methods Mulberry trees are widely distributed in Iran. After reviewing the population of mulberry according to descriptor of IGPRI throughout the country, 118 specimens of mulberry from genotypes were selected and they were evaluated for their morphological characteristics. Some of these characters are quantitative and some others were measured and recorded based on coding UPOV. After collecting the data, descriptive statistics were extracted and analyzed. With the assumption of variance analysis distinguished genotypes into treatment and regions within each area as replication, design used nested. Mean comparison of quantitative traits LSD. Results The result of ANOVA showed average comparison of genotypes investigated difference was significant for all studied characteristics: the leaf margin, petiole length, flower diameter, which represent the coefficients of variation that were higher diversity among genotypes investigated. Therefore, there is the possibility of selecting genotypes for different values of an attribute. The characteristics that have high coefficients of variation are more diverse than the character coefficient with low variations. Discussions Analysis of simple correlation coefficients showed a significant positive correlation during the harvest time of fruit ripening r=0.82, the shape of inflorescence at the time of fruit ripening r=0.71, shape of inflorescence at the time of fruit ripening r=0.71 at 1% level. Brix with the shape by time of fruit ripening r=0.60 Brix of fruit shape r=0.28 fresh weight at the time of ripening r=0.81, significant positive correlations were calculated at 5% level. The results of mulberries ripen over an extended period of time unlike many other fruits. Using cluster analysis to the “Ward” based on morphological characterization at a distance of 15; genotypes were divided in three main groups. In order to determine the most important morphological characters to differentiate among the population of principal component analysis was used (PCA).The first components to 0.65 percent of total respectively. Overall, the results showed that great morphological variation among the plants population.